summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_otda_mapping.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/source/auto_examples/plot_otda_mapping.rst')
-rw-r--r--docs/source/auto_examples/plot_otda_mapping.rst235
1 files changed, 0 insertions, 235 deletions
diff --git a/docs/source/auto_examples/plot_otda_mapping.rst b/docs/source/auto_examples/plot_otda_mapping.rst
deleted file mode 100644
index 1d95fc6..0000000
--- a/docs/source/auto_examples/plot_otda_mapping.rst
+++ /dev/null
@@ -1,235 +0,0 @@
-
-
-.. _sphx_glr_auto_examples_plot_otda_mapping.py:
-
-
-===========================================
-OT mapping estimation for domain adaptation
-===========================================
-
-This example presents how to use MappingTransport to estimate at the same
-time both the coupling transport and approximate the transport map with either
-a linear or a kernelized mapping as introduced in [8].
-
-[8] M. Perrot, N. Courty, R. Flamary, A. Habrard,
- "Mapping estimation for discrete optimal transport",
- Neural Information Processing Systems (NIPS), 2016.
-
-
-
-.. code-block:: python
-
-
- # Authors: Remi Flamary <remi.flamary@unice.fr>
- # Stanislas Chambon <stan.chambon@gmail.com>
- #
- # License: MIT License
-
- import numpy as np
- import matplotlib.pylab as pl
- import ot
-
-
-
-
-
-
-
-
-Generate data
--------------
-
-
-
-.. code-block:: python
-
-
- n_source_samples = 100
- n_target_samples = 100
- theta = 2 * np.pi / 20
- noise_level = 0.1
-
- Xs, ys = ot.datasets.make_data_classif(
- 'gaussrot', n_source_samples, nz=noise_level)
- Xs_new, _ = ot.datasets.make_data_classif(
- 'gaussrot', n_source_samples, nz=noise_level)
- Xt, yt = ot.datasets.make_data_classif(
- 'gaussrot', n_target_samples, theta=theta, nz=noise_level)
-
- # one of the target mode changes its variance (no linear mapping)
- Xt[yt == 2] *= 3
- Xt = Xt + 4
-
-
-
-
-
-
-
-Plot data
----------
-
-
-
-.. code-block:: python
-
-
- pl.figure(1, (10, 5))
- pl.clf()
- pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
- pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
- pl.legend(loc=0)
- pl.title('Source and target distributions')
-
-
-
-
-
-.. image:: /auto_examples/images/sphx_glr_plot_otda_mapping_001.png
- :align: center
-
-
-
-
-Instantiate the different transport algorithms and fit them
------------------------------------------------------------
-
-
-
-.. code-block:: python
-
-
- # MappingTransport with linear kernel
- ot_mapping_linear = ot.da.MappingTransport(
- kernel="linear", mu=1e0, eta=1e-8, bias=True,
- max_iter=20, verbose=True)
-
- ot_mapping_linear.fit(Xs=Xs, Xt=Xt)
-
- # for original source samples, transform applies barycentric mapping
- transp_Xs_linear = ot_mapping_linear.transform(Xs=Xs)
-
- # for out of source samples, transform applies the linear mapping
- transp_Xs_linear_new = ot_mapping_linear.transform(Xs=Xs_new)
-
-
- # MappingTransport with gaussian kernel
- ot_mapping_gaussian = ot.da.MappingTransport(
- kernel="gaussian", eta=1e-5, mu=1e-1, bias=True, sigma=1,
- max_iter=10, verbose=True)
- ot_mapping_gaussian.fit(Xs=Xs, Xt=Xt)
-
- # for original source samples, transform applies barycentric mapping
- transp_Xs_gaussian = ot_mapping_gaussian.transform(Xs=Xs)
-
- # for out of source samples, transform applies the gaussian mapping
- transp_Xs_gaussian_new = ot_mapping_gaussian.transform(Xs=Xs_new)
-
-
-
-
-
-
-.. rst-class:: sphx-glr-script-out
-
- Out::
-
- It. |Loss |Delta loss
- --------------------------------
- 0|4.299275e+03|0.000000e+00
- 1|4.290443e+03|-2.054271e-03
- 2|4.290040e+03|-9.389994e-05
- 3|4.289876e+03|-3.830707e-05
- 4|4.289783e+03|-2.157428e-05
- 5|4.289724e+03|-1.390941e-05
- 6|4.289706e+03|-4.051054e-06
- It. |Loss |Delta loss
- --------------------------------
- 0|4.326465e+02|0.000000e+00
- 1|4.282533e+02|-1.015416e-02
- 2|4.279473e+02|-7.145955e-04
- 3|4.277941e+02|-3.580104e-04
- 4|4.277069e+02|-2.039229e-04
- 5|4.276462e+02|-1.418698e-04
- 6|4.276011e+02|-1.054172e-04
- 7|4.275663e+02|-8.145802e-05
- 8|4.275405e+02|-6.028774e-05
- 9|4.275191e+02|-5.005886e-05
- 10|4.275019e+02|-4.021935e-05
-
-
-Plot transported samples
-------------------------
-
-
-
-.. code-block:: python
-
-
- pl.figure(2)
- pl.clf()
- pl.subplot(2, 2, 1)
- pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
- label='Target samples', alpha=.2)
- pl.scatter(transp_Xs_linear[:, 0], transp_Xs_linear[:, 1], c=ys, marker='+',
- label='Mapped source samples')
- pl.title("Bary. mapping (linear)")
- pl.legend(loc=0)
-
- pl.subplot(2, 2, 2)
- pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
- label='Target samples', alpha=.2)
- pl.scatter(transp_Xs_linear_new[:, 0], transp_Xs_linear_new[:, 1],
- c=ys, marker='+', label='Learned mapping')
- pl.title("Estim. mapping (linear)")
-
- pl.subplot(2, 2, 3)
- pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
- label='Target samples', alpha=.2)
- pl.scatter(transp_Xs_gaussian[:, 0], transp_Xs_gaussian[:, 1], c=ys,
- marker='+', label='barycentric mapping')
- pl.title("Bary. mapping (kernel)")
-
- pl.subplot(2, 2, 4)
- pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
- label='Target samples', alpha=.2)
- pl.scatter(transp_Xs_gaussian_new[:, 0], transp_Xs_gaussian_new[:, 1], c=ys,
- marker='+', label='Learned mapping')
- pl.title("Estim. mapping (kernel)")
- pl.tight_layout()
-
- pl.show()
-
-
-
-.. image:: /auto_examples/images/sphx_glr_plot_otda_mapping_003.png
- :align: center
-
-
-
-
-**Total running time of the script:** ( 0 minutes 0.795 seconds)
-
-
-
-.. only :: html
-
- .. container:: sphx-glr-footer
-
-
- .. container:: sphx-glr-download
-
- :download:`Download Python source code: plot_otda_mapping.py <plot_otda_mapping.py>`
-
-
-
- .. container:: sphx-glr-download
-
- :download:`Download Jupyter notebook: plot_otda_mapping.ipynb <plot_otda_mapping.ipynb>`
-
-
-.. only:: html
-
- .. rst-class:: sphx-glr-signature
-
- `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.readthedocs.io>`_