summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_otda_semi_supervised.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/source/auto_examples/plot_otda_semi_supervised.rst')
-rw-r--r--docs/source/auto_examples/plot_otda_semi_supervised.rst245
1 files changed, 0 insertions, 245 deletions
diff --git a/docs/source/auto_examples/plot_otda_semi_supervised.rst b/docs/source/auto_examples/plot_otda_semi_supervised.rst
deleted file mode 100644
index 2ed7819..0000000
--- a/docs/source/auto_examples/plot_otda_semi_supervised.rst
+++ /dev/null
@@ -1,245 +0,0 @@
-
-
-.. _sphx_glr_auto_examples_plot_otda_semi_supervised.py:
-
-
-============================================
-OTDA unsupervised vs semi-supervised setting
-============================================
-
-This example introduces a semi supervised domain adaptation in a 2D setting.
-It explicits the problem of semi supervised domain adaptation and introduces
-some optimal transport approaches to solve it.
-
-Quantities such as optimal couplings, greater coupling coefficients and
-transported samples are represented in order to give a visual understanding
-of what the transport methods are doing.
-
-
-
-.. code-block:: python
-
-
- # Authors: Remi Flamary <remi.flamary@unice.fr>
- # Stanislas Chambon <stan.chambon@gmail.com>
- #
- # License: MIT License
-
- import matplotlib.pylab as pl
- import ot
-
-
-
-
-
-
-
-
-Generate data
--------------
-
-
-
-.. code-block:: python
-
-
- n_samples_source = 150
- n_samples_target = 150
-
- Xs, ys = ot.datasets.make_data_classif('3gauss', n_samples_source)
- Xt, yt = ot.datasets.make_data_classif('3gauss2', n_samples_target)
-
-
-
-
-
-
-
-
-Transport source samples onto target samples
---------------------------------------------
-
-
-
-.. code-block:: python
-
-
-
- # unsupervised domain adaptation
- ot_sinkhorn_un = ot.da.SinkhornTransport(reg_e=1e-1)
- ot_sinkhorn_un.fit(Xs=Xs, Xt=Xt)
- transp_Xs_sinkhorn_un = ot_sinkhorn_un.transform(Xs=Xs)
-
- # semi-supervised domain adaptation
- ot_sinkhorn_semi = ot.da.SinkhornTransport(reg_e=1e-1)
- ot_sinkhorn_semi.fit(Xs=Xs, Xt=Xt, ys=ys, yt=yt)
- transp_Xs_sinkhorn_semi = ot_sinkhorn_semi.transform(Xs=Xs)
-
- # semi supervised DA uses available labaled target samples to modify the cost
- # matrix involved in the OT problem. The cost of transporting a source sample
- # of class A onto a target sample of class B != A is set to infinite, or a
- # very large value
-
- # note that in the present case we consider that all the target samples are
- # labeled. For daily applications, some target sample might not have labels,
- # in this case the element of yt corresponding to these samples should be
- # filled with -1.
-
- # Warning: we recall that -1 cannot be used as a class label
-
-
-
-
-
-
-
-
-Fig 1 : plots source and target samples + matrix of pairwise distance
----------------------------------------------------------------------
-
-
-
-.. code-block:: python
-
-
- pl.figure(1, figsize=(10, 10))
- pl.subplot(2, 2, 1)
- pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
- pl.xticks([])
- pl.yticks([])
- pl.legend(loc=0)
- pl.title('Source samples')
-
- pl.subplot(2, 2, 2)
- pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
- pl.xticks([])
- pl.yticks([])
- pl.legend(loc=0)
- pl.title('Target samples')
-
- pl.subplot(2, 2, 3)
- pl.imshow(ot_sinkhorn_un.cost_, interpolation='nearest')
- pl.xticks([])
- pl.yticks([])
- pl.title('Cost matrix - unsupervised DA')
-
- pl.subplot(2, 2, 4)
- pl.imshow(ot_sinkhorn_semi.cost_, interpolation='nearest')
- pl.xticks([])
- pl.yticks([])
- pl.title('Cost matrix - semisupervised DA')
-
- pl.tight_layout()
-
- # the optimal coupling in the semi-supervised DA case will exhibit " shape
- # similar" to the cost matrix, (block diagonal matrix)
-
-
-
-
-
-.. image:: /auto_examples/images/sphx_glr_plot_otda_semi_supervised_001.png
- :align: center
-
-
-
-
-Fig 2 : plots optimal couplings for the different methods
----------------------------------------------------------
-
-
-
-.. code-block:: python
-
-
- pl.figure(2, figsize=(8, 4))
-
- pl.subplot(1, 2, 1)
- pl.imshow(ot_sinkhorn_un.coupling_, interpolation='nearest')
- pl.xticks([])
- pl.yticks([])
- pl.title('Optimal coupling\nUnsupervised DA')
-
- pl.subplot(1, 2, 2)
- pl.imshow(ot_sinkhorn_semi.coupling_, interpolation='nearest')
- pl.xticks([])
- pl.yticks([])
- pl.title('Optimal coupling\nSemi-supervised DA')
-
- pl.tight_layout()
-
-
-
-
-
-.. image:: /auto_examples/images/sphx_glr_plot_otda_semi_supervised_003.png
- :align: center
-
-
-
-
-Fig 3 : plot transported samples
---------------------------------
-
-
-
-.. code-block:: python
-
-
- # display transported samples
- pl.figure(4, figsize=(8, 4))
- pl.subplot(1, 2, 1)
- pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
- label='Target samples', alpha=0.5)
- pl.scatter(transp_Xs_sinkhorn_un[:, 0], transp_Xs_sinkhorn_un[:, 1], c=ys,
- marker='+', label='Transp samples', s=30)
- pl.title('Transported samples\nEmdTransport')
- pl.legend(loc=0)
- pl.xticks([])
- pl.yticks([])
-
- pl.subplot(1, 2, 2)
- pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
- label='Target samples', alpha=0.5)
- pl.scatter(transp_Xs_sinkhorn_semi[:, 0], transp_Xs_sinkhorn_semi[:, 1], c=ys,
- marker='+', label='Transp samples', s=30)
- pl.title('Transported samples\nSinkhornTransport')
- pl.xticks([])
- pl.yticks([])
-
- pl.tight_layout()
- pl.show()
-
-
-
-.. image:: /auto_examples/images/sphx_glr_plot_otda_semi_supervised_006.png
- :align: center
-
-
-
-
-**Total running time of the script:** ( 0 minutes 0.256 seconds)
-
-
-
-.. only :: html
-
- .. container:: sphx-glr-footer
-
-
- .. container:: sphx-glr-download
-
- :download:`Download Python source code: plot_otda_semi_supervised.py <plot_otda_semi_supervised.py>`
-
-
-
- .. container:: sphx-glr-download
-
- :download:`Download Jupyter notebook: plot_otda_semi_supervised.ipynb <plot_otda_semi_supervised.ipynb>`
-
-
-.. only:: html
-
- .. rst-class:: sphx-glr-signature
-
- `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.readthedocs.io>`_