summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_stochastic.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'docs/source/auto_examples/plot_stochastic.ipynb')
-rw-r--r--docs/source/auto_examples/plot_stochastic.ipynb295
1 files changed, 0 insertions, 295 deletions
diff --git a/docs/source/auto_examples/plot_stochastic.ipynb b/docs/source/auto_examples/plot_stochastic.ipynb
deleted file mode 100644
index 7f6ff3d..0000000
--- a/docs/source/auto_examples/plot_stochastic.ipynb
+++ /dev/null
@@ -1,295 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "%matplotlib inline"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "\n# Stochastic examples\n\n\nThis example is designed to show how to use the stochatic optimization\nalgorithms for descrete and semicontinous measures from the POT library.\n\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "# Author: Kilian Fatras <kilian.fatras@gmail.com>\n#\n# License: MIT License\n\nimport matplotlib.pylab as pl\nimport numpy as np\nimport ot\nimport ot.plot"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "COMPUTE TRANSPORTATION MATRIX FOR SEMI-DUAL PROBLEM\n############################################################################\n############################################################################\n DISCRETE CASE:\n\n Sample two discrete measures for the discrete case\n ---------------------------------------------\n\n Define 2 discrete measures a and b, the points where are defined the source\n and the target measures and finally the cost matrix c.\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "n_source = 7\nn_target = 4\nreg = 1\nnumItermax = 1000\n\na = ot.utils.unif(n_source)\nb = ot.utils.unif(n_target)\n\nrng = np.random.RandomState(0)\nX_source = rng.randn(n_source, 2)\nY_target = rng.randn(n_target, 2)\nM = ot.dist(X_source, Y_target)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Call the \"SAG\" method to find the transportation matrix in the discrete case\n---------------------------------------------\n\nDefine the method \"SAG\", call ot.solve_semi_dual_entropic and plot the\nresults.\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "method = \"SAG\"\nsag_pi = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method,\n numItermax)\nprint(sag_pi)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "SEMICONTINOUS CASE:\n\nSample one general measure a, one discrete measures b for the semicontinous\ncase\n---------------------------------------------\n\nDefine one general measure a, one discrete measures b, the points where\nare defined the source and the target measures and finally the cost matrix c.\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "n_source = 7\nn_target = 4\nreg = 1\nnumItermax = 1000\nlog = True\n\na = ot.utils.unif(n_source)\nb = ot.utils.unif(n_target)\n\nrng = np.random.RandomState(0)\nX_source = rng.randn(n_source, 2)\nY_target = rng.randn(n_target, 2)\nM = ot.dist(X_source, Y_target)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Call the \"ASGD\" method to find the transportation matrix in the semicontinous\ncase\n---------------------------------------------\n\nDefine the method \"ASGD\", call ot.solve_semi_dual_entropic and plot the\nresults.\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "method = \"ASGD\"\nasgd_pi, log_asgd = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method,\n numItermax, log=log)\nprint(log_asgd['alpha'], log_asgd['beta'])\nprint(asgd_pi)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Compare the results with the Sinkhorn algorithm\n---------------------------------------------\n\nCall the Sinkhorn algorithm from POT\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "sinkhorn_pi = ot.sinkhorn(a, b, M, reg)\nprint(sinkhorn_pi)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "PLOT TRANSPORTATION MATRIX\n#############################################################################\n\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Plot SAG results\n----------------\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "pl.figure(4, figsize=(5, 5))\not.plot.plot1D_mat(a, b, sag_pi, 'semi-dual : OT matrix SAG')\npl.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Plot ASGD results\n-----------------\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "pl.figure(4, figsize=(5, 5))\not.plot.plot1D_mat(a, b, asgd_pi, 'semi-dual : OT matrix ASGD')\npl.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Plot Sinkhorn results\n---------------------\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "pl.figure(4, figsize=(5, 5))\not.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn')\npl.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "COMPUTE TRANSPORTATION MATRIX FOR DUAL PROBLEM\n############################################################################\n############################################################################\n SEMICONTINOUS CASE:\n\n Sample one general measure a, one discrete measures b for the semicontinous\n case\n ---------------------------------------------\n\n Define one general measure a, one discrete measures b, the points where\n are defined the source and the target measures and finally the cost matrix c.\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "n_source = 7\nn_target = 4\nreg = 1\nnumItermax = 100000\nlr = 0.1\nbatch_size = 3\nlog = True\n\na = ot.utils.unif(n_source)\nb = ot.utils.unif(n_target)\n\nrng = np.random.RandomState(0)\nX_source = rng.randn(n_source, 2)\nY_target = rng.randn(n_target, 2)\nM = ot.dist(X_source, Y_target)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Call the \"SGD\" dual method to find the transportation matrix in the\nsemicontinous case\n---------------------------------------------\n\nCall ot.solve_dual_entropic and plot the results.\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "sgd_dual_pi, log_sgd = ot.stochastic.solve_dual_entropic(a, b, M, reg,\n batch_size, numItermax,\n lr, log=log)\nprint(log_sgd['alpha'], log_sgd['beta'])\nprint(sgd_dual_pi)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Compare the results with the Sinkhorn algorithm\n---------------------------------------------\n\nCall the Sinkhorn algorithm from POT\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "sinkhorn_pi = ot.sinkhorn(a, b, M, reg)\nprint(sinkhorn_pi)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Plot SGD results\n-----------------\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "pl.figure(4, figsize=(5, 5))\not.plot.plot1D_mat(a, b, sgd_dual_pi, 'dual : OT matrix SGD')\npl.show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Plot Sinkhorn results\n---------------------\n\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": false
- },
- "outputs": [],
- "source": [
- "pl.figure(4, figsize=(5, 5))\not.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn')\npl.show()"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.7"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-} \ No newline at end of file