summaryrefslogtreecommitdiff
path: root/docs/source/quickstart.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/source/quickstart.rst')
-rw-r--r--docs/source/quickstart.rst258
1 files changed, 258 insertions, 0 deletions
diff --git a/docs/source/quickstart.rst b/docs/source/quickstart.rst
new file mode 100644
index 0000000..d8d4838
--- /dev/null
+++ b/docs/source/quickstart.rst
@@ -0,0 +1,258 @@
+
+Quick start guide
+=================
+
+In the following we provide some pointers about which functions and classes
+to use for different problems related to optimal transport (OT).
+
+
+Optimal transport and Wasserstein distance
+------------------------------------------
+
+.. note::
+ In POT, most functions that solve OT or regularized OT problems have two
+ versions that return the OT matrix or the value of the optimal solution. For
+ instance :any:`ot.emd` return the OT matrix and :any:`ot.emd2` return the
+ Wassertsein distance.
+
+Solving optimal transport
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The optimal transport problem between discrete distributions is often expressed
+as
+ .. math::
+ \gamma^* = arg\min_\gamma \sum_{i,j}\gamma_{i,j}M_{i,j}
+
+ s.t. \gamma 1 = a; \gamma^T 1= b; \gamma\geq 0
+
+where :
+
+- :math:`M\in\mathbb{R}_+^{m\times n}` is the metric cost matrix defining the cost to move mass from bin :math:`a_i` to bin :math:`b_j`.
+- :math:`a` and :math:`b` are histograms (positive, sum to 1) that represent the weights of each samples in the source an target distributions.
+
+Solving the linear program above can be done using the function :any:`ot.emd`
+that will return the optimal transport matrix :math:`\gamma^*`:
+
+.. code:: python
+
+ # a,b are 1D histograms (sum to 1 and positive)
+ # M is the ground cost matrix
+ T=ot.emd(a,b,M) # exact linear program
+
+The method used for solving the OT problem is the network simplex, it is
+implemented in C from [1]_. It has a complexity of :math:`O(n^3)` but the
+solver is quite efficient and uses sparsity of the solution.
+
+.. hint::
+ Examples of use for :any:`ot.emd` are available in the following examples:
+
+ - :any:`auto_examples/plot_OT_2D_samples`
+ - :any:`auto_examples/plot_OT_1D`
+ - :any:`auto_examples/plot_OT_L1_vs_L2`
+
+Computing Wasserstein distance
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The value of the OT solution is often more of interest that the OT matrix :
+
+ .. math::
+ W(a,b)=\min_\gamma \sum_{i,j}\gamma_{i,j}M_{i,j}
+
+ s.t. \gamma 1 = a; \gamma^T 1= b; \gamma\geq 0
+
+
+where :math:`W(a,b)` is the `Wasserstein distance
+<https://en.wikipedia.org/wiki/Wasserstein_metric>`_ between distributions a and b
+It is a metrix that has nice statistical
+properties. It can computed from an already estimated OT matrix with
+:code:`np.sum(T*M)` or directly with the function :any:`ot.emd2`.
+
+.. code:: python
+
+ # a,b are 1D histograms (sum to 1 and positive)
+ # M is the ground cost matrix
+ W=ot.emd2(a,b,M) # Wasserstein distance / EMD value
+
+
+.. hint::
+ Examples of use for :any:`ot.emd2` are available in the following examples:
+
+ - :any:`auto_examples/plot_compute_emd`
+
+
+Regularized Optimal Transport
+-----------------------------
+
+Entropic regularized OT
+^^^^^^^^^^^^^^^^^^^^^^^
+
+
+Other regularization
+^^^^^^^^^^^^^^^^^^^^
+
+Stochastic gradient decsent
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Wasserstein Barycenters
+-----------------------
+
+Monge mapping and Domain adaptation with Optimal transport
+----------------------------------------
+
+
+Other applications
+------------------
+
+
+GPU acceleration
+----------------
+
+
+
+FAQ
+---
+
+
+
+1. **How to solve a discrete optimal transport problem ?**
+
+ The solver for discrete is the function :py:mod:`ot.emd` that returns
+ the OT transport matrix. If you want to solve a regularized OT you can
+ use :py:mod:`ot.sinkhorn`.
+
+
+
+ Here is a simple use case:
+
+ .. code:: python
+
+ # a,b are 1D histograms (sum to 1 and positive)
+ # M is the ground cost matrix
+ T=ot.emd(a,b,M) # exact linear program
+ T_reg=ot.sinkhorn(a,b,M,reg) # entropic regularized OT
+
+ More detailed examples can be seen on this
+ :doc:`auto_examples/plot_OT_2D_samples`
+
+
+2. **Compute a Wasserstein distance**
+
+
+References
+----------
+
+.. [1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011,
+ December). `Displacement nterpolation using Lagrangian mass transport
+ <https://people.csail.mit.edu/sparis/publi/2011/sigasia/Bonneel_11_Displacement_Interpolation.pdf>`__.
+ In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM.
+
+.. [2] Cuturi, M. (2013). `Sinkhorn distances: Lightspeed computation of
+ optimal transport <https://arxiv.org/pdf/1306.0895.pdf>`__. In Advances
+ in Neural Information Processing Systems (pp. 2292-2300).
+
+.. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G.
+ (2015). `Iterative Bregman projections for regularized transportation
+ problems <https://arxiv.org/pdf/1412.5154.pdf>`__. SIAM Journal on
+ Scientific Computing, 37(2), A1111-A1138.
+
+.. [4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti,
+ `Supervised planetary unmixing with optimal
+ transport <https://hal.archives-ouvertes.fr/hal-01377236/document>`__,
+ Whorkshop on Hyperspectral Image and Signal Processing : Evolution in
+ Remote Sensing (WHISPERS), 2016.
+
+.. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, `Optimal Transport
+ for Domain Adaptation <https://arxiv.org/pdf/1507.00504.pdf>`__, in IEEE
+ Transactions on Pattern Analysis and Machine Intelligence , vol.PP,
+ no.99, pp.1-1
+
+.. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
+ `Regularized discrete optimal
+ transport <https://arxiv.org/pdf/1307.5551.pdf>`__. SIAM Journal on
+ Imaging Sciences, 7(3), 1853-1882.
+
+.. [7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). `Generalized
+ conditional gradient: analysis of convergence and
+ applications <https://arxiv.org/pdf/1510.06567.pdf>`__. arXiv preprint
+ arXiv:1510.06567.
+
+.. [8] M. Perrot, N. Courty, R. Flamary, A. Habrard (2016), `Mapping
+ estimation for discrete optimal
+ transport <http://remi.flamary.com/biblio/perrot2016mapping.pdf>`__,
+ Neural Information Processing Systems (NIPS).
+
+.. [9] Schmitzer, B. (2016). `Stabilized Sparse Scaling Algorithms for
+ Entropy Regularized Transport
+ Problems <https://arxiv.org/pdf/1610.06519.pdf>`__. arXiv preprint
+ arXiv:1610.06519.
+
+.. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016).
+ `Scaling algorithms for unbalanced transport
+ problems <https://arxiv.org/pdf/1607.05816.pdf>`__. arXiv preprint
+ arXiv:1607.05816.
+
+.. [11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016).
+ `Wasserstein Discriminant
+ Analysis <https://arxiv.org/pdf/1608.08063.pdf>`__. arXiv preprint
+ arXiv:1608.08063.
+
+.. [12] Gabriel Peyré, Marco Cuturi, and Justin Solomon (2016),
+ `Gromov-Wasserstein averaging of kernel and distance
+ matrices <http://proceedings.mlr.press/v48/peyre16.html>`__
+ International Conference on Machine Learning (ICML).
+
+.. [13] Mémoli, Facundo (2011). `Gromov–Wasserstein distances and the
+ metric approach to object
+ matching <https://media.adelaide.edu.au/acvt/Publications/2011/2011-Gromov%E2%80%93Wasserstein%20Distances%20and%20the%20Metric%20Approach%20to%20Object%20Matching.pdf>`__.
+ Foundations of computational mathematics 11.4 : 417-487.
+
+.. [14] Knott, M. and Smith, C. S. (1984).`On the optimal mapping of
+ distributions <https://link.springer.com/article/10.1007/BF00934745>`__,
+ Journal of Optimization Theory and Applications Vol 43.
+
+.. [15] Peyré, G., & Cuturi, M. (2018). `Computational Optimal
+ Transport <https://arxiv.org/pdf/1803.00567.pdf>`__ .
+
+.. [16] Agueh, M., & Carlier, G. (2011). `Barycenters in the Wasserstein
+ space <https://hal.archives-ouvertes.fr/hal-00637399/document>`__. SIAM
+ Journal on Mathematical Analysis, 43(2), 904-924.
+
+.. [17] Blondel, M., Seguy, V., & Rolet, A. (2018). `Smooth and Sparse
+ Optimal Transport <https://arxiv.org/abs/1710.06276>`__. Proceedings of
+ the Twenty-First International Conference on Artificial Intelligence and
+ Statistics (AISTATS).
+
+.. [18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) `Stochastic
+ Optimization for Large-scale Optimal
+ Transport <https://arxiv.org/abs/1605.08527>`__. Advances in Neural
+ Information Processing Systems (2016).
+
+.. [19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet,
+ A.& Blondel, M. `Large-scale Optimal Transport and Mapping
+ Estimation <https://arxiv.org/pdf/1711.02283.pdf>`__. International
+ Conference on Learning Representation (2018)
+
+.. [20] Cuturi, M. and Doucet, A. (2014) `Fast Computation of Wasserstein
+ Barycenters <http://proceedings.mlr.press/v32/cuturi14.html>`__.
+ International Conference in Machine Learning
+
+.. [21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A.,
+ Nguyen, A. & Guibas, L. (2015). `Convolutional wasserstein distances:
+ Efficient optimal transportation on geometric
+ domains <https://dl.acm.org/citation.cfm?id=2766963>`__. ACM
+ Transactions on Graphics (TOG), 34(4), 66.
+
+.. [22] J. Altschuler, J.Weed, P. Rigollet, (2017) `Near-linear time
+ approximation algorithms for optimal transport via Sinkhorn
+ iteration <https://papers.nips.cc/paper/6792-near-linear-time-approximation-algorithms-for-optimal-transport-via-sinkhorn-iteration.pdf>`__,
+ Advances in Neural Information Processing Systems (NIPS) 31
+
+.. [23] Aude, G., Peyré, G., Cuturi, M., `Learning Generative Models with
+ Sinkhorn Divergences <https://arxiv.org/abs/1706.00292>`__, Proceedings
+ of the Twenty-First International Conference on Artficial Intelligence
+ and Statistics, (AISTATS) 21, 2018
+
+.. [24] Vayer, T., Chapel, L., Flamary, R., Tavenard, R. and Courty, N.
+ (2019). `Optimal Transport for structured data with application on
+ graphs <http://proceedings.mlr.press/v97/titouan19a.html>`__ Proceedings
+ of the 36th International Conference on Machine Learning (ICML). \ No newline at end of file