summaryrefslogtreecommitdiff
path: root/examples/domain-adaptation/plot_otda_d2.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/domain-adaptation/plot_otda_d2.py')
-rw-r--r--examples/domain-adaptation/plot_otda_d2.py174
1 files changed, 174 insertions, 0 deletions
diff --git a/examples/domain-adaptation/plot_otda_d2.py b/examples/domain-adaptation/plot_otda_d2.py
new file mode 100644
index 0000000..d8b2a93
--- /dev/null
+++ b/examples/domain-adaptation/plot_otda_d2.py
@@ -0,0 +1,174 @@
+# -*- coding: utf-8 -*-
+"""
+===================================================
+OT for domain adaptation on empirical distributions
+===================================================
+
+This example introduces a domain adaptation in a 2D setting. It explicits
+the problem of domain adaptation and introduces some optimal transport
+approaches to solve it.
+
+Quantities such as optimal couplings, greater coupling coefficients and
+transported samples are represented in order to give a visual understanding
+of what the transport methods are doing.
+"""
+
+# Authors: Remi Flamary <remi.flamary@unice.fr>
+# Stanislas Chambon <stan.chambon@gmail.com>
+#
+# License: MIT License
+
+# sphinx_gallery_thumbnail_number = 2
+
+import matplotlib.pylab as pl
+import ot
+import ot.plot
+
+##############################################################################
+# Generate data
+# -------------
+
+n_samples_source = 150
+n_samples_target = 150
+
+Xs, ys = ot.datasets.make_data_classif('3gauss', n_samples_source)
+Xt, yt = ot.datasets.make_data_classif('3gauss2', n_samples_target)
+
+# Cost matrix
+M = ot.dist(Xs, Xt, metric='sqeuclidean')
+
+
+##############################################################################
+# Instantiate the different transport algorithms and fit them
+# -----------------------------------------------------------
+
+# EMD Transport
+ot_emd = ot.da.EMDTransport()
+ot_emd.fit(Xs=Xs, Xt=Xt)
+
+# Sinkhorn Transport
+ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1)
+ot_sinkhorn.fit(Xs=Xs, Xt=Xt)
+
+# Sinkhorn Transport with Group lasso regularization
+ot_lpl1 = ot.da.SinkhornLpl1Transport(reg_e=1e-1, reg_cl=1e0)
+ot_lpl1.fit(Xs=Xs, ys=ys, Xt=Xt)
+
+# transport source samples onto target samples
+transp_Xs_emd = ot_emd.transform(Xs=Xs)
+transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=Xs)
+transp_Xs_lpl1 = ot_lpl1.transform(Xs=Xs)
+
+
+##############################################################################
+# Fig 1 : plots source and target samples + matrix of pairwise distance
+# ---------------------------------------------------------------------
+
+pl.figure(1, figsize=(10, 10))
+pl.subplot(2, 2, 1)
+pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
+pl.xticks([])
+pl.yticks([])
+pl.legend(loc=0)
+pl.title('Source samples')
+
+pl.subplot(2, 2, 2)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
+pl.xticks([])
+pl.yticks([])
+pl.legend(loc=0)
+pl.title('Target samples')
+
+pl.subplot(2, 2, 3)
+pl.imshow(M, interpolation='nearest')
+pl.xticks([])
+pl.yticks([])
+pl.title('Matrix of pairwise distances')
+pl.tight_layout()
+
+
+##############################################################################
+# Fig 2 : plots optimal couplings for the different methods
+# ---------------------------------------------------------
+pl.figure(2, figsize=(10, 6))
+
+pl.subplot(2, 3, 1)
+pl.imshow(ot_emd.coupling_, interpolation='nearest')
+pl.xticks([])
+pl.yticks([])
+pl.title('Optimal coupling\nEMDTransport')
+
+pl.subplot(2, 3, 2)
+pl.imshow(ot_sinkhorn.coupling_, interpolation='nearest')
+pl.xticks([])
+pl.yticks([])
+pl.title('Optimal coupling\nSinkhornTransport')
+
+pl.subplot(2, 3, 3)
+pl.imshow(ot_lpl1.coupling_, interpolation='nearest')
+pl.xticks([])
+pl.yticks([])
+pl.title('Optimal coupling\nSinkhornLpl1Transport')
+
+pl.subplot(2, 3, 4)
+ot.plot.plot2D_samples_mat(Xs, Xt, ot_emd.coupling_, c=[.5, .5, 1])
+pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
+pl.xticks([])
+pl.yticks([])
+pl.title('Main coupling coefficients\nEMDTransport')
+
+pl.subplot(2, 3, 5)
+ot.plot.plot2D_samples_mat(Xs, Xt, ot_sinkhorn.coupling_, c=[.5, .5, 1])
+pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
+pl.xticks([])
+pl.yticks([])
+pl.title('Main coupling coefficients\nSinkhornTransport')
+
+pl.subplot(2, 3, 6)
+ot.plot.plot2D_samples_mat(Xs, Xt, ot_lpl1.coupling_, c=[.5, .5, 1])
+pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
+pl.xticks([])
+pl.yticks([])
+pl.title('Main coupling coefficients\nSinkhornLpl1Transport')
+pl.tight_layout()
+
+
+##############################################################################
+# Fig 3 : plot transported samples
+# --------------------------------
+
+# display transported samples
+pl.figure(4, figsize=(10, 4))
+pl.subplot(1, 3, 1)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=0.5)
+pl.scatter(transp_Xs_emd[:, 0], transp_Xs_emd[:, 1], c=ys,
+ marker='+', label='Transp samples', s=30)
+pl.title('Transported samples\nEmdTransport')
+pl.legend(loc=0)
+pl.xticks([])
+pl.yticks([])
+
+pl.subplot(1, 3, 2)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=0.5)
+pl.scatter(transp_Xs_sinkhorn[:, 0], transp_Xs_sinkhorn[:, 1], c=ys,
+ marker='+', label='Transp samples', s=30)
+pl.title('Transported samples\nSinkhornTransport')
+pl.xticks([])
+pl.yticks([])
+
+pl.subplot(1, 3, 3)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=0.5)
+pl.scatter(transp_Xs_lpl1[:, 0], transp_Xs_lpl1[:, 1], c=ys,
+ marker='+', label='Transp samples', s=30)
+pl.title('Transported samples\nSinkhornLpl1Transport')
+pl.xticks([])
+pl.yticks([])
+
+pl.tight_layout()
+pl.show()