summaryrefslogtreecommitdiff
path: root/examples/domain-adaptation/plot_otda_laplacian.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/domain-adaptation/plot_otda_laplacian.py')
-rw-r--r--examples/domain-adaptation/plot_otda_laplacian.py127
1 files changed, 127 insertions, 0 deletions
diff --git a/examples/domain-adaptation/plot_otda_laplacian.py b/examples/domain-adaptation/plot_otda_laplacian.py
new file mode 100644
index 0000000..67c8f67
--- /dev/null
+++ b/examples/domain-adaptation/plot_otda_laplacian.py
@@ -0,0 +1,127 @@
+# -*- coding: utf-8 -*-
+"""
+======================================================
+OT with Laplacian regularization for domain adaptation
+======================================================
+
+This example introduces a domain adaptation in a 2D setting and OTDA
+approach with Laplacian regularization.
+
+"""
+
+# Authors: Ievgen Redko <ievgen.redko@univ-st-etienne.fr>
+
+# License: MIT License
+
+import matplotlib.pylab as pl
+import ot
+
+##############################################################################
+# Generate data
+# -------------
+
+n_source_samples = 150
+n_target_samples = 150
+
+Xs, ys = ot.datasets.make_data_classif('3gauss', n_source_samples)
+Xt, yt = ot.datasets.make_data_classif('3gauss2', n_target_samples)
+
+
+##############################################################################
+# Instantiate the different transport algorithms and fit them
+# -----------------------------------------------------------
+
+# EMD Transport
+ot_emd = ot.da.EMDTransport()
+ot_emd.fit(Xs=Xs, Xt=Xt)
+
+# Sinkhorn Transport
+ot_sinkhorn = ot.da.SinkhornTransport(reg_e=.01)
+ot_sinkhorn.fit(Xs=Xs, Xt=Xt)
+
+# EMD Transport with Laplacian regularization
+ot_emd_laplace = ot.da.EMDLaplaceTransport(reg_lap=100, reg_src=1)
+ot_emd_laplace.fit(Xs=Xs, Xt=Xt)
+
+# transport source samples onto target samples
+transp_Xs_emd = ot_emd.transform(Xs=Xs)
+transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=Xs)
+transp_Xs_emd_laplace = ot_emd_laplace.transform(Xs=Xs)
+
+##############################################################################
+# Fig 1 : plots source and target samples
+# ---------------------------------------
+
+pl.figure(1, figsize=(10, 5))
+pl.subplot(1, 2, 1)
+pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
+pl.xticks([])
+pl.yticks([])
+pl.legend(loc=0)
+pl.title('Source samples')
+
+pl.subplot(1, 2, 2)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
+pl.xticks([])
+pl.yticks([])
+pl.legend(loc=0)
+pl.title('Target samples')
+pl.tight_layout()
+
+
+##############################################################################
+# Fig 2 : plot optimal couplings and transported samples
+# ------------------------------------------------------
+
+param_img = {'interpolation': 'nearest'}
+
+pl.figure(2, figsize=(15, 8))
+pl.subplot(2, 3, 1)
+pl.imshow(ot_emd.coupling_, **param_img)
+pl.xticks([])
+pl.yticks([])
+pl.title('Optimal coupling\nEMDTransport')
+
+pl.figure(2, figsize=(15, 8))
+pl.subplot(2, 3, 2)
+pl.imshow(ot_sinkhorn.coupling_, **param_img)
+pl.xticks([])
+pl.yticks([])
+pl.title('Optimal coupling\nSinkhornTransport')
+
+pl.subplot(2, 3, 3)
+pl.imshow(ot_emd_laplace.coupling_, **param_img)
+pl.xticks([])
+pl.yticks([])
+pl.title('Optimal coupling\nEMDLaplaceTransport')
+
+pl.subplot(2, 3, 4)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=0.3)
+pl.scatter(transp_Xs_emd[:, 0], transp_Xs_emd[:, 1], c=ys,
+ marker='+', label='Transp samples', s=30)
+pl.xticks([])
+pl.yticks([])
+pl.title('Transported samples\nEmdTransport')
+pl.legend(loc="lower left")
+
+pl.subplot(2, 3, 5)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=0.3)
+pl.scatter(transp_Xs_sinkhorn[:, 0], transp_Xs_sinkhorn[:, 1], c=ys,
+ marker='+', label='Transp samples', s=30)
+pl.xticks([])
+pl.yticks([])
+pl.title('Transported samples\nSinkhornTransport')
+
+pl.subplot(2, 3, 6)
+pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
+ label='Target samples', alpha=0.3)
+pl.scatter(transp_Xs_emd_laplace[:, 0], transp_Xs_emd_laplace[:, 1], c=ys,
+ marker='+', label='Transp samples', s=30)
+pl.xticks([])
+pl.yticks([])
+pl.title('Transported samples\nEMDLaplaceTransport')
+pl.tight_layout()
+
+pl.show()