summaryrefslogtreecommitdiff
path: root/examples/gromov/plot_barycenter_fgw.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/gromov/plot_barycenter_fgw.py')
-rw-r--r--examples/gromov/plot_barycenter_fgw.py185
1 files changed, 185 insertions, 0 deletions
diff --git a/examples/gromov/plot_barycenter_fgw.py b/examples/gromov/plot_barycenter_fgw.py
new file mode 100644
index 0000000..3f81765
--- /dev/null
+++ b/examples/gromov/plot_barycenter_fgw.py
@@ -0,0 +1,185 @@
+# -*- coding: utf-8 -*-
+"""
+=================================
+Plot graphs' barycenter using FGW
+=================================
+
+This example illustrates the computation barycenter of labeled graphs using
+FGW [18].
+
+Requires networkx >=2
+
+[18] Vayer Titouan, Chapel Laetitia, Flamary RĂ©mi, Tavenard Romain
+and Courty Nicolas
+"Optimal Transport for structured data with application on graphs"
+International Conference on Machine Learning (ICML). 2019.
+
+"""
+
+# Author: Titouan Vayer <titouan.vayer@irisa.fr>
+#
+# License: MIT License
+
+#%% load libraries
+import numpy as np
+import matplotlib.pyplot as plt
+import networkx as nx
+import math
+from scipy.sparse.csgraph import shortest_path
+import matplotlib.colors as mcol
+from matplotlib import cm
+from ot.gromov import fgw_barycenters
+#%% Graph functions
+
+
+def find_thresh(C, inf=0.5, sup=3, step=10):
+ """ Trick to find the adequate thresholds from where value of the C matrix are considered close enough to say that nodes are connected
+ Tthe threshold is found by a linesearch between values "inf" and "sup" with "step" thresholds tested.
+ The optimal threshold is the one which minimizes the reconstruction error between the shortest_path matrix coming from the thresholded adjency matrix
+ and the original matrix.
+ Parameters
+ ----------
+ C : ndarray, shape (n_nodes,n_nodes)
+ The structure matrix to threshold
+ inf : float
+ The beginning of the linesearch
+ sup : float
+ The end of the linesearch
+ step : integer
+ Number of thresholds tested
+ """
+ dist = []
+ search = np.linspace(inf, sup, step)
+ for thresh in search:
+ Cprime = sp_to_adjency(C, 0, thresh)
+ SC = shortest_path(Cprime, method='D')
+ SC[SC == float('inf')] = 100
+ dist.append(np.linalg.norm(SC - C))
+ return search[np.argmin(dist)], dist
+
+
+def sp_to_adjency(C, threshinf=0.2, threshsup=1.8):
+ """ Thresholds the structure matrix in order to compute an adjency matrix.
+ All values between threshinf and threshsup are considered representing connected nodes and set to 1. Else are set to 0
+ Parameters
+ ----------
+ C : ndarray, shape (n_nodes,n_nodes)
+ The structure matrix to threshold
+ threshinf : float
+ The minimum value of distance from which the new value is set to 1
+ threshsup : float
+ The maximum value of distance from which the new value is set to 1
+ Returns
+ -------
+ C : ndarray, shape (n_nodes,n_nodes)
+ The threshold matrix. Each element is in {0,1}
+ """
+ H = np.zeros_like(C)
+ np.fill_diagonal(H, np.diagonal(C))
+ C = C - H
+ C = np.minimum(np.maximum(C, threshinf), threshsup)
+ C[C == threshsup] = 0
+ C[C != 0] = 1
+
+ return C
+
+
+def build_noisy_circular_graph(N=20, mu=0, sigma=0.3, with_noise=False, structure_noise=False, p=None):
+ """ Create a noisy circular graph
+ """
+ g = nx.Graph()
+ g.add_nodes_from(list(range(N)))
+ for i in range(N):
+ noise = float(np.random.normal(mu, sigma, 1))
+ if with_noise:
+ g.add_node(i, attr_name=math.sin((2 * i * math.pi / N)) + noise)
+ else:
+ g.add_node(i, attr_name=math.sin(2 * i * math.pi / N))
+ g.add_edge(i, i + 1)
+ if structure_noise:
+ randomint = np.random.randint(0, p)
+ if randomint == 0:
+ if i <= N - 3:
+ g.add_edge(i, i + 2)
+ if i == N - 2:
+ g.add_edge(i, 0)
+ if i == N - 1:
+ g.add_edge(i, 1)
+ g.add_edge(N, 0)
+ noise = float(np.random.normal(mu, sigma, 1))
+ if with_noise:
+ g.add_node(N, attr_name=math.sin((2 * N * math.pi / N)) + noise)
+ else:
+ g.add_node(N, attr_name=math.sin(2 * N * math.pi / N))
+ return g
+
+
+def graph_colors(nx_graph, vmin=0, vmax=7):
+ cnorm = mcol.Normalize(vmin=vmin, vmax=vmax)
+ cpick = cm.ScalarMappable(norm=cnorm, cmap='viridis')
+ cpick.set_array([])
+ val_map = {}
+ for k, v in nx.get_node_attributes(nx_graph, 'attr_name').items():
+ val_map[k] = cpick.to_rgba(v)
+ colors = []
+ for node in nx_graph.nodes():
+ colors.append(val_map[node])
+ return colors
+
+##############################################################################
+# Generate data
+# -------------
+
+#%% circular dataset
+# We build a dataset of noisy circular graphs.
+# Noise is added on the structures by random connections and on the features by gaussian noise.
+
+
+np.random.seed(30)
+X0 = []
+for k in range(9):
+ X0.append(build_noisy_circular_graph(np.random.randint(15, 25), with_noise=True, structure_noise=True, p=3))
+
+##############################################################################
+# Plot data
+# ---------
+
+#%% Plot graphs
+
+plt.figure(figsize=(8, 10))
+for i in range(len(X0)):
+ plt.subplot(3, 3, i + 1)
+ g = X0[i]
+ pos = nx.kamada_kawai_layout(g)
+ nx.draw(g, pos=pos, node_color=graph_colors(g, vmin=-1, vmax=1), with_labels=False, node_size=100)
+plt.suptitle('Dataset of noisy graphs. Color indicates the label', fontsize=20)
+plt.show()
+
+##############################################################################
+# Barycenter computation
+# ----------------------
+
+#%% We compute the barycenter using FGW. Structure matrices are computed using the shortest_path distance in the graph
+# Features distances are the euclidean distances
+Cs = [shortest_path(nx.adjacency_matrix(x)) for x in X0]
+ps = [np.ones(len(x.nodes())) / len(x.nodes()) for x in X0]
+Ys = [np.array([v for (k, v) in nx.get_node_attributes(x, 'attr_name').items()]).reshape(-1, 1) for x in X0]
+lambdas = np.array([np.ones(len(Ys)) / len(Ys)]).ravel()
+sizebary = 15 # we choose a barycenter with 15 nodes
+
+A, C, log = fgw_barycenters(sizebary, Ys, Cs, ps, lambdas, alpha=0.95, log=True)
+
+##############################################################################
+# Plot Barycenter
+# -------------------------
+
+#%% Create the barycenter
+bary = nx.from_numpy_matrix(sp_to_adjency(C, threshinf=0, threshsup=find_thresh(C, sup=100, step=100)[0]))
+for i, v in enumerate(A.ravel()):
+ bary.add_node(i, attr_name=v)
+
+#%%
+pos = nx.kamada_kawai_layout(bary)
+nx.draw(bary, pos=pos, node_color=graph_colors(bary, vmin=-1, vmax=1), with_labels=False)
+plt.suptitle('Barycenter', fontsize=20)
+plt.show()