summaryrefslogtreecommitdiff
path: root/examples/plot_OTDA_color_images.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/plot_OTDA_color_images.py')
-rw-r--r--examples/plot_OTDA_color_images.py115
1 files changed, 58 insertions, 57 deletions
diff --git a/examples/plot_OTDA_color_images.py b/examples/plot_OTDA_color_images.py
index 68eee44..a8861c6 100644
--- a/examples/plot_OTDA_color_images.py
+++ b/examples/plot_OTDA_color_images.py
@@ -4,142 +4,143 @@
OT for domain adaptation with image color adaptation [6]
========================================================
-[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882.
+[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014).
+Regularized discrete optimal transport.
+SIAM Journal on Imaging Sciences, 7(3), 1853-1882.
"""
import numpy as np
-import scipy.ndimage as spi
+from scipy import ndimage
import matplotlib.pylab as pl
import ot
#%% Loading images
-I1=spi.imread('../data/ocean_day.jpg').astype(np.float64)/256
-I2=spi.imread('../data/ocean_sunset.jpg').astype(np.float64)/256
+I1 = ndimage.imread('../data/ocean_day.jpg').astype(np.float64) / 256
+I2 = ndimage.imread('../data/ocean_sunset.jpg').astype(np.float64) / 256
#%% Plot images
-pl.figure(1)
+pl.figure(1, figsize=(6.4, 3))
-pl.subplot(1,2,1)
+pl.subplot(1, 2, 1)
pl.imshow(I1)
+pl.axis('off')
pl.title('Image 1')
-pl.subplot(1,2,2)
+pl.subplot(1, 2, 2)
pl.imshow(I2)
+pl.axis('off')
pl.title('Image 2')
pl.show()
#%% Image conversion and dataset generation
+
def im2mat(I):
"""Converts and image to matrix (one pixel per line)"""
- return I.reshape((I.shape[0]*I.shape[1],I.shape[2]))
+ return I.reshape((I.shape[0] * I.shape[1], I.shape[2]))
+
-def mat2im(X,shape):
+def mat2im(X, shape):
"""Converts back a matrix to an image"""
return X.reshape(shape)
-X1=im2mat(I1)
-X2=im2mat(I2)
+X1 = im2mat(I1)
+X2 = im2mat(I2)
# training samples
-nb=1000
-idx1=np.random.randint(X1.shape[0],size=(nb,))
-idx2=np.random.randint(X2.shape[0],size=(nb,))
+nb = 1000
+idx1 = np.random.randint(X1.shape[0], size=(nb,))
+idx2 = np.random.randint(X2.shape[0], size=(nb,))
-xs=X1[idx1,:]
-xt=X2[idx2,:]
+xs = X1[idx1, :]
+xt = X2[idx2, :]
#%% Plot image distributions
-pl.figure(2,(10,5))
+pl.figure(2, figsize=(6.4, 3))
-pl.subplot(1,2,1)
-pl.scatter(xs[:,0],xs[:,2],c=xs)
-pl.axis([0,1,0,1])
+pl.subplot(1, 2, 1)
+pl.scatter(xs[:, 0], xs[:, 2], c=xs)
+pl.axis([0, 1, 0, 1])
pl.xlabel('Red')
pl.ylabel('Blue')
pl.title('Image 1')
-pl.subplot(1,2,2)
-#pl.imshow(I2)
-pl.scatter(xt[:,0],xt[:,2],c=xt)
-pl.axis([0,1,0,1])
+pl.subplot(1, 2, 2)
+pl.scatter(xt[:, 0], xt[:, 2], c=xt)
+pl.axis([0, 1, 0, 1])
pl.xlabel('Red')
pl.ylabel('Blue')
pl.title('Image 2')
-
-pl.show()
-
-
+pl.tight_layout()
#%% domain adaptation between images
# LP problem
-da_emd=ot.da.OTDA() # init class
-da_emd.fit(xs,xt) # fit distributions
-
+da_emd = ot.da.OTDA() # init class
+da_emd.fit(xs, xt) # fit distributions
# sinkhorn regularization
-lambd=1e-1
-da_entrop=ot.da.OTDA_sinkhorn()
-da_entrop.fit(xs,xt,reg=lambd)
-
-
+lambd = 1e-1
+da_entrop = ot.da.OTDA_sinkhorn()
+da_entrop.fit(xs, xt, reg=lambd)
#%% prediction between images (using out of sample prediction as in [6])
-X1t=da_emd.predict(X1)
-X2t=da_emd.predict(X2,-1)
+X1t = da_emd.predict(X1)
+X2t = da_emd.predict(X2, -1)
-
-X1te=da_entrop.predict(X1)
-X2te=da_entrop.predict(X2,-1)
+X1te = da_entrop.predict(X1)
+X2te = da_entrop.predict(X2, -1)
def minmax(I):
- return np.minimum(np.maximum(I,0),1)
+ return np.clip(I, 0, 1)
-I1t=minmax(mat2im(X1t,I1.shape))
-I2t=minmax(mat2im(X2t,I2.shape))
+I1t = minmax(mat2im(X1t, I1.shape))
+I2t = minmax(mat2im(X2t, I2.shape))
-I1te=minmax(mat2im(X1te,I1.shape))
-I2te=minmax(mat2im(X2te,I2.shape))
+I1te = minmax(mat2im(X1te, I1.shape))
+I2te = minmax(mat2im(X2te, I2.shape))
#%% plot all images
-pl.figure(2,(10,8))
-
-pl.subplot(2,3,1)
+pl.figure(2, figsize=(8, 4))
+pl.subplot(2, 3, 1)
pl.imshow(I1)
+pl.axis('off')
pl.title('Image 1')
-pl.subplot(2,3,2)
+pl.subplot(2, 3, 2)
pl.imshow(I1t)
+pl.axis('off')
pl.title('Image 1 Adapt')
-
-pl.subplot(2,3,3)
+pl.subplot(2, 3, 3)
pl.imshow(I1te)
+pl.axis('off')
pl.title('Image 1 Adapt (reg)')
-pl.subplot(2,3,4)
-
+pl.subplot(2, 3, 4)
pl.imshow(I2)
+pl.axis('off')
pl.title('Image 2')
-pl.subplot(2,3,5)
+pl.subplot(2, 3, 5)
pl.imshow(I2t)
+pl.axis('off')
pl.title('Image 2 Adapt')
-
-pl.subplot(2,3,6)
+pl.subplot(2, 3, 6)
pl.imshow(I2te)
+pl.axis('off')
pl.title('Image 2 Adapt (reg)')
+pl.tight_layout()
pl.show()