summaryrefslogtreecommitdiff
path: root/examples/plot_OTDA_mapping_color_images.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/plot_OTDA_mapping_color_images.py')
-rw-r--r--examples/plot_OTDA_mapping_color_images.py169
1 files changed, 0 insertions, 169 deletions
diff --git a/examples/plot_OTDA_mapping_color_images.py b/examples/plot_OTDA_mapping_color_images.py
deleted file mode 100644
index 8064b25..0000000
--- a/examples/plot_OTDA_mapping_color_images.py
+++ /dev/null
@@ -1,169 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-====================================================================================
-OT for domain adaptation with image color adaptation [6] with mapping estimation [8]
-====================================================================================
-
-[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014). Regularized
- discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882.
-[8] M. Perrot, N. Courty, R. Flamary, A. Habrard, "Mapping estimation for
- discrete optimal transport", Neural Information Processing Systems (NIPS), 2016.
-
-"""
-
-# Author: Remi Flamary <remi.flamary@unice.fr>
-#
-# License: MIT License
-
-import numpy as np
-from scipy import ndimage
-import matplotlib.pylab as pl
-import ot
-
-
-#%% Loading images
-
-I1 = ndimage.imread('../data/ocean_day.jpg').astype(np.float64) / 256
-I2 = ndimage.imread('../data/ocean_sunset.jpg').astype(np.float64) / 256
-
-#%% Plot images
-
-pl.figure(1, figsize=(6.4, 3))
-pl.subplot(1, 2, 1)
-pl.imshow(I1)
-pl.axis('off')
-pl.title('Image 1')
-
-pl.subplot(1, 2, 2)
-pl.imshow(I2)
-pl.axis('off')
-pl.title('Image 2')
-pl.tight_layout()
-
-
-#%% Image conversion and dataset generation
-
-def im2mat(I):
- """Converts and image to matrix (one pixel per line)"""
- return I.reshape((I.shape[0] * I.shape[1], I.shape[2]))
-
-
-def mat2im(X, shape):
- """Converts back a matrix to an image"""
- return X.reshape(shape)
-
-
-X1 = im2mat(I1)
-X2 = im2mat(I2)
-
-# training samples
-nb = 1000
-idx1 = np.random.randint(X1.shape[0], size=(nb,))
-idx2 = np.random.randint(X2.shape[0], size=(nb,))
-
-xs = X1[idx1, :]
-xt = X2[idx2, :]
-
-#%% Plot image distributions
-
-
-pl.figure(2, figsize=(6.4, 5))
-
-pl.subplot(1, 2, 1)
-pl.scatter(xs[:, 0], xs[:, 2], c=xs)
-pl.axis([0, 1, 0, 1])
-pl.xlabel('Red')
-pl.ylabel('Blue')
-pl.title('Image 1')
-
-pl.subplot(1, 2, 2)
-pl.scatter(xt[:, 0], xt[:, 2], c=xt)
-pl.axis([0, 1, 0, 1])
-pl.xlabel('Red')
-pl.ylabel('Blue')
-pl.title('Image 2')
-pl.tight_layout()
-
-
-#%% domain adaptation between images
-
-def minmax(I):
- return np.clip(I, 0, 1)
-
-
-# LP problem
-da_emd = ot.da.OTDA() # init class
-da_emd.fit(xs, xt) # fit distributions
-
-X1t = da_emd.predict(X1) # out of sample
-I1t = minmax(mat2im(X1t, I1.shape))
-
-# sinkhorn regularization
-lambd = 1e-1
-da_entrop = ot.da.OTDA_sinkhorn()
-da_entrop.fit(xs, xt, reg=lambd)
-
-X1te = da_entrop.predict(X1)
-I1te = minmax(mat2im(X1te, I1.shape))
-
-# linear mapping estimation
-eta = 1e-8 # quadratic regularization for regression
-mu = 1e0 # weight of the OT linear term
-bias = True # estimate a bias
-
-ot_mapping = ot.da.OTDA_mapping_linear()
-ot_mapping.fit(xs, xt, mu=mu, eta=eta, bias=bias, numItermax=20, verbose=True)
-
-X1tl = ot_mapping.predict(X1) # use the estimated mapping
-I1tl = minmax(mat2im(X1tl, I1.shape))
-
-# nonlinear mapping estimation
-eta = 1e-2 # quadratic regularization for regression
-mu = 1e0 # weight of the OT linear term
-bias = False # estimate a bias
-sigma = 1 # sigma bandwidth fot gaussian kernel
-
-
-ot_mapping_kernel = ot.da.OTDA_mapping_kernel()
-ot_mapping_kernel.fit(
- xs, xt, mu=mu, eta=eta, sigma=sigma, bias=bias, numItermax=10, verbose=True)
-
-X1tn = ot_mapping_kernel.predict(X1) # use the estimated mapping
-I1tn = minmax(mat2im(X1tn, I1.shape))
-
-#%% plot images
-
-pl.figure(2, figsize=(8, 4))
-
-pl.subplot(2, 3, 1)
-pl.imshow(I1)
-pl.axis('off')
-pl.title('Im. 1')
-
-pl.subplot(2, 3, 2)
-pl.imshow(I2)
-pl.axis('off')
-pl.title('Im. 2')
-
-pl.subplot(2, 3, 3)
-pl.imshow(I1t)
-pl.axis('off')
-pl.title('Im. 1 Interp LP')
-
-pl.subplot(2, 3, 4)
-pl.imshow(I1te)
-pl.axis('off')
-pl.title('Im. 1 Interp Entrop')
-
-pl.subplot(2, 3, 5)
-pl.imshow(I1tl)
-pl.axis('off')
-pl.title('Im. 1 Linear mapping')
-
-pl.subplot(2, 3, 6)
-pl.imshow(I1tn)
-pl.axis('off')
-pl.title('Im. 1 nonlinear mapping')
-pl.tight_layout()
-
-pl.show()