summaryrefslogtreecommitdiff
path: root/examples/plot_fgw.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/plot_fgw.py')
-rw-r--r--examples/plot_fgw.py138
1 files changed, 69 insertions, 69 deletions
diff --git a/examples/plot_fgw.py b/examples/plot_fgw.py
index bfa7fb4..ae3c487 100644
--- a/examples/plot_fgw.py
+++ b/examples/plot_fgw.py
@@ -20,132 +20,132 @@ This example illustrates the computation of FGW for 1D measures[18].
import matplotlib.pyplot as pl
import numpy as np
import ot
-from ot.gromov import gromov_wasserstein,fused_gromov_wasserstein
+from ot.gromov import gromov_wasserstein, fused_gromov_wasserstein
#%% parameters
-# We create two 1D random measures
-n=20
-n2=30
-sig=1
-sig2=0.1
+# We create two 1D random measures
+n = 20
+n2 = 30
+sig = 1
+sig2 = 0.1
np.random.seed(0)
-phi=np.arange(n)[:,None]
-xs=phi+sig*np.random.randn(n,1)
-ys=np.vstack((np.ones((n//2,1)),0*np.ones((n//2,1))))+sig2*np.random.randn(n,1)
+phi = np.arange(n)[:, None]
+xs = phi + sig * np.random.randn(n, 1)
+ys = np.vstack((np.ones((n // 2, 1)), 0 * np.ones((n // 2, 1)))) + sig2 * np.random.randn(n, 1)
-phi2=np.arange(n2)[:,None]
-xt=phi2+sig*np.random.randn(n2,1)
-yt=np.vstack((np.ones((n2//2,1)),0*np.ones((n2//2,1))))+sig2*np.random.randn(n2,1)
-yt= yt[::-1,:]
+phi2 = np.arange(n2)[:, None]
+xt = phi2 + sig * np.random.randn(n2, 1)
+yt = np.vstack((np.ones((n2 // 2, 1)), 0 * np.ones((n2 // 2, 1)))) + sig2 * np.random.randn(n2, 1)
+yt = yt[::-1, :]
-p=ot.unif(n)
-q=ot.unif(n2)
+p = ot.unif(n)
+q = ot.unif(n2)
#%% plot the distributions
pl.close(10)
-pl.figure(10,(7,7))
+pl.figure(10, (7, 7))
-pl.subplot(2,1,1)
+pl.subplot(2, 1, 1)
-pl.scatter(ys,xs,c=phi,s=70)
-pl.ylabel('Feature value a',fontsize=20)
-pl.title('$\mu=\sum_i \delta_{x_i,a_i}$',fontsize=25, usetex=True, y=1)
+pl.scatter(ys, xs, c=phi, s=70)
+pl.ylabel('Feature value a', fontsize=20)
+pl.title('$\mu=\sum_i \delta_{x_i,a_i}$', fontsize=25, usetex=True, y=1)
pl.xticks(())
pl.yticks(())
-pl.subplot(2,1,2)
-pl.scatter(yt,xt,c=phi2,s=70)
-pl.xlabel('coordinates x/y',fontsize=25)
-pl.ylabel('Feature value b',fontsize=20)
-pl.title('$\\nu=\sum_j \delta_{y_j,b_j}$',fontsize=25, usetex=True, y=1)
+pl.subplot(2, 1, 2)
+pl.scatter(yt, xt, c=phi2, s=70)
+pl.xlabel('coordinates x/y', fontsize=25)
+pl.ylabel('Feature value b', fontsize=20)
+pl.title('$\\nu=\sum_j \delta_{y_j,b_j}$', fontsize=25, usetex=True, y=1)
pl.yticks(())
pl.tight_layout()
pl.show()
#%% Structure matrices and across-features distance matrix
-C1=ot.dist(xs)
-C2=ot.dist(xt).T
-M=ot.dist(ys,yt)
-w1=ot.unif(C1.shape[0])
-w2=ot.unif(C2.shape[0])
-Got=ot.emd([],[],M)
+C1 = ot.dist(xs)
+C2 = ot.dist(xt).T
+M = ot.dist(ys, yt)
+w1 = ot.unif(C1.shape[0])
+w2 = ot.unif(C2.shape[0])
+Got = ot.emd([], [], M)
#%%
-cmap='Reds'
+cmap = 'Reds'
pl.close(10)
-pl.figure(10,(5,5))
-fs=15
-l_x=[0,5,10,15]
-l_y=[0,5,10,15,20,25]
+pl.figure(10, (5, 5))
+fs = 15
+l_x = [0, 5, 10, 15]
+l_y = [0, 5, 10, 15, 20, 25]
gs = pl.GridSpec(5, 5)
-ax1=pl.subplot(gs[3:,:2])
+ax1 = pl.subplot(gs[3:, :2])
-pl.imshow(C1,cmap=cmap,interpolation='nearest')
-pl.title("$C_1$",fontsize=fs)
-pl.xlabel("$k$",fontsize=fs)
-pl.ylabel("$i$",fontsize=fs)
+pl.imshow(C1, cmap=cmap, interpolation='nearest')
+pl.title("$C_1$", fontsize=fs)
+pl.xlabel("$k$", fontsize=fs)
+pl.ylabel("$i$", fontsize=fs)
pl.xticks(l_x)
pl.yticks(l_x)
-ax2=pl.subplot(gs[:3,2:])
+ax2 = pl.subplot(gs[:3, 2:])
-pl.imshow(C2,cmap=cmap,interpolation='nearest')
-pl.title("$C_2$",fontsize=fs)
-pl.ylabel("$l$",fontsize=fs)
+pl.imshow(C2, cmap=cmap, interpolation='nearest')
+pl.title("$C_2$", fontsize=fs)
+pl.ylabel("$l$", fontsize=fs)
#pl.ylabel("$l$",fontsize=fs)
pl.xticks(())
pl.yticks(l_y)
ax2.set_aspect('auto')
-ax3=pl.subplot(gs[3:,2:],sharex=ax2,sharey=ax1)
-pl.imshow(M,cmap=cmap,interpolation='nearest')
+ax3 = pl.subplot(gs[3:, 2:], sharex=ax2, sharey=ax1)
+pl.imshow(M, cmap=cmap, interpolation='nearest')
pl.yticks(l_x)
pl.xticks(l_y)
-pl.ylabel("$i$",fontsize=fs)
-pl.title("$M_{AB}$",fontsize=fs)
-pl.xlabel("$j$",fontsize=fs)
+pl.ylabel("$i$", fontsize=fs)
+pl.title("$M_{AB}$", fontsize=fs)
+pl.xlabel("$j$", fontsize=fs)
pl.tight_layout()
ax3.set_aspect('auto')
pl.show()
#%% Computing FGW and GW
-alpha=1e-3
-
+alpha = 1e-3
+
ot.tic()
-Gwg,logw=fused_gromov_wasserstein(M,C1,C2,p,q,loss_fun='square_loss',alpha=alpha,verbose=True,log=True)
+Gwg, logw = fused_gromov_wasserstein(M, C1, C2, p, q, loss_fun='square_loss', alpha=alpha, verbose=True, log=True)
ot.toc()
-#%reload_ext WGW
-Gg,log=gromov_wasserstein(C1,C2,p,q,loss_fun='square_loss',verbose=True,log=True)
-
+#%reload_ext WGW
+Gg, log = gromov_wasserstein(C1, C2, p, q, loss_fun='square_loss', verbose=True, log=True)
+
#%% visu OT matrix
-cmap='Blues'
-fs=15
-pl.figure(2,(13,5))
+cmap = 'Blues'
+fs = 15
+pl.figure(2, (13, 5))
pl.clf()
-pl.subplot(1,3,1)
-pl.imshow(Got,cmap=cmap,interpolation='nearest')
+pl.subplot(1, 3, 1)
+pl.imshow(Got, cmap=cmap, interpolation='nearest')
#pl.xlabel("$y$",fontsize=fs)
-pl.ylabel("$i$",fontsize=fs)
+pl.ylabel("$i$", fontsize=fs)
pl.xticks(())
pl.title('Wasserstein ($M$ only)')
-pl.subplot(1,3,2)
-pl.imshow(Gg,cmap=cmap,interpolation='nearest')
+pl.subplot(1, 3, 2)
+pl.imshow(Gg, cmap=cmap, interpolation='nearest')
pl.title('Gromov ($C_1,C_2$ only)')
pl.xticks(())
-pl.subplot(1,3,3)
-pl.imshow(Gwg,cmap=cmap,interpolation='nearest')
+pl.subplot(1, 3, 3)
+pl.imshow(Gwg, cmap=cmap, interpolation='nearest')
pl.title('FGW ($M+C_1,C_2$)')
-pl.xlabel("$j$",fontsize=fs)
-pl.ylabel("$i$",fontsize=fs)
+pl.xlabel("$j$", fontsize=fs)
+pl.ylabel("$i$", fontsize=fs)
pl.tight_layout()
-pl.show() \ No newline at end of file
+pl.show()