summaryrefslogtreecommitdiff
path: root/examples/plot_otda_d2.py
diff options
context:
space:
mode:
Diffstat (limited to 'examples/plot_otda_d2.py')
-rw-r--r--examples/plot_otda_d2.py172
1 files changed, 0 insertions, 172 deletions
diff --git a/examples/plot_otda_d2.py b/examples/plot_otda_d2.py
deleted file mode 100644
index cf22c2f..0000000
--- a/examples/plot_otda_d2.py
+++ /dev/null
@@ -1,172 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-===================================================
-OT for domain adaptation on empirical distributions
-===================================================
-
-This example introduces a domain adaptation in a 2D setting. It explicits
-the problem of domain adaptation and introduces some optimal transport
-approaches to solve it.
-
-Quantities such as optimal couplings, greater coupling coefficients and
-transported samples are represented in order to give a visual understanding
-of what the transport methods are doing.
-"""
-
-# Authors: Remi Flamary <remi.flamary@unice.fr>
-# Stanislas Chambon <stan.chambon@gmail.com>
-#
-# License: MIT License
-
-import matplotlib.pylab as pl
-import ot
-import ot.plot
-
-##############################################################################
-# generate data
-# -------------
-
-n_samples_source = 150
-n_samples_target = 150
-
-Xs, ys = ot.datasets.make_data_classif('3gauss', n_samples_source)
-Xt, yt = ot.datasets.make_data_classif('3gauss2', n_samples_target)
-
-# Cost matrix
-M = ot.dist(Xs, Xt, metric='sqeuclidean')
-
-
-##############################################################################
-# Instantiate the different transport algorithms and fit them
-# -----------------------------------------------------------
-
-# EMD Transport
-ot_emd = ot.da.EMDTransport()
-ot_emd.fit(Xs=Xs, Xt=Xt)
-
-# Sinkhorn Transport
-ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1)
-ot_sinkhorn.fit(Xs=Xs, Xt=Xt)
-
-# Sinkhorn Transport with Group lasso regularization
-ot_lpl1 = ot.da.SinkhornLpl1Transport(reg_e=1e-1, reg_cl=1e0)
-ot_lpl1.fit(Xs=Xs, ys=ys, Xt=Xt)
-
-# transport source samples onto target samples
-transp_Xs_emd = ot_emd.transform(Xs=Xs)
-transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=Xs)
-transp_Xs_lpl1 = ot_lpl1.transform(Xs=Xs)
-
-
-##############################################################################
-# Fig 1 : plots source and target samples + matrix of pairwise distance
-# ---------------------------------------------------------------------
-
-pl.figure(1, figsize=(10, 10))
-pl.subplot(2, 2, 1)
-pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
-pl.xticks([])
-pl.yticks([])
-pl.legend(loc=0)
-pl.title('Source samples')
-
-pl.subplot(2, 2, 2)
-pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
-pl.xticks([])
-pl.yticks([])
-pl.legend(loc=0)
-pl.title('Target samples')
-
-pl.subplot(2, 2, 3)
-pl.imshow(M, interpolation='nearest')
-pl.xticks([])
-pl.yticks([])
-pl.title('Matrix of pairwise distances')
-pl.tight_layout()
-
-
-##############################################################################
-# Fig 2 : plots optimal couplings for the different methods
-# ---------------------------------------------------------
-pl.figure(2, figsize=(10, 6))
-
-pl.subplot(2, 3, 1)
-pl.imshow(ot_emd.coupling_, interpolation='nearest')
-pl.xticks([])
-pl.yticks([])
-pl.title('Optimal coupling\nEMDTransport')
-
-pl.subplot(2, 3, 2)
-pl.imshow(ot_sinkhorn.coupling_, interpolation='nearest')
-pl.xticks([])
-pl.yticks([])
-pl.title('Optimal coupling\nSinkhornTransport')
-
-pl.subplot(2, 3, 3)
-pl.imshow(ot_lpl1.coupling_, interpolation='nearest')
-pl.xticks([])
-pl.yticks([])
-pl.title('Optimal coupling\nSinkhornLpl1Transport')
-
-pl.subplot(2, 3, 4)
-ot.plot.plot2D_samples_mat(Xs, Xt, ot_emd.coupling_, c=[.5, .5, 1])
-pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
-pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
-pl.xticks([])
-pl.yticks([])
-pl.title('Main coupling coefficients\nEMDTransport')
-
-pl.subplot(2, 3, 5)
-ot.plot.plot2D_samples_mat(Xs, Xt, ot_sinkhorn.coupling_, c=[.5, .5, 1])
-pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
-pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
-pl.xticks([])
-pl.yticks([])
-pl.title('Main coupling coefficients\nSinkhornTransport')
-
-pl.subplot(2, 3, 6)
-ot.plot.plot2D_samples_mat(Xs, Xt, ot_lpl1.coupling_, c=[.5, .5, 1])
-pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples')
-pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples')
-pl.xticks([])
-pl.yticks([])
-pl.title('Main coupling coefficients\nSinkhornLpl1Transport')
-pl.tight_layout()
-
-
-##############################################################################
-# Fig 3 : plot transported samples
-# --------------------------------
-
-# display transported samples
-pl.figure(4, figsize=(10, 4))
-pl.subplot(1, 3, 1)
-pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
- label='Target samples', alpha=0.5)
-pl.scatter(transp_Xs_emd[:, 0], transp_Xs_emd[:, 1], c=ys,
- marker='+', label='Transp samples', s=30)
-pl.title('Transported samples\nEmdTransport')
-pl.legend(loc=0)
-pl.xticks([])
-pl.yticks([])
-
-pl.subplot(1, 3, 2)
-pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
- label='Target samples', alpha=0.5)
-pl.scatter(transp_Xs_sinkhorn[:, 0], transp_Xs_sinkhorn[:, 1], c=ys,
- marker='+', label='Transp samples', s=30)
-pl.title('Transported samples\nSinkhornTransport')
-pl.xticks([])
-pl.yticks([])
-
-pl.subplot(1, 3, 3)
-pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o',
- label='Target samples', alpha=0.5)
-pl.scatter(transp_Xs_lpl1[:, 0], transp_Xs_lpl1[:, 1], c=ys,
- marker='+', label='Transp samples', s=30)
-pl.title('Transported samples\nSinkhornLpl1Transport')
-pl.xticks([])
-pl.yticks([])
-
-pl.tight_layout()
-pl.show()