summaryrefslogtreecommitdiff
path: root/ot/da.py
diff options
context:
space:
mode:
Diffstat (limited to 'ot/da.py')
-rw-r--r--ot/da.py674
1 files changed, 639 insertions, 35 deletions
diff --git a/ot/da.py b/ot/da.py
index 108a38d..b881a8b 100644
--- a/ot/da.py
+++ b/ot/da.py
@@ -7,15 +7,16 @@ Domain adaptation with optimal transport
# Nicolas Courty <ncourty@irisa.fr>
# Michael Perrot <michael.perrot@univ-st-etienne.fr>
# Nathalie Gayraud <nat.gayraud@gmail.com>
+# Ievgen Redko <ievgen.redko@univ-st-etienne.fr>
#
# License: MIT License
import numpy as np
import scipy.linalg as linalg
-from .bregman import sinkhorn
+from .bregman import sinkhorn, jcpot_barycenter
from .lp import emd
-from .utils import unif, dist, kernel, cost_normalization
+from .utils import unif, dist, kernel, cost_normalization, label_normalization, laplacian, dots
from .utils import check_params, BaseEstimator
from .unbalanced import sinkhorn_unbalanced
from .optim import cg
@@ -127,7 +128,7 @@ def sinkhorn_lpl1_mm(a, labels_a, b, M, reg, eta=0.1, numItermax=10,
W = np.ones(M.shape)
for (i, c) in enumerate(classes):
majs = np.sum(transp[indices_labels[i]], axis=0)
- majs = p * ((majs + epsilon)**(p - 1))
+ majs = p * ((majs + epsilon) ** (p - 1))
W[indices_labels[i]] = majs
return transp
@@ -359,8 +360,8 @@ def joint_OT_mapping_linear(xs, xt, mu=1, eta=0.001, bias=False, verbose=False,
def loss(L, G):
"""Compute full loss"""
- return np.sum((xs1.dot(L) - ns * G.dot(xt))**2) + mu * \
- np.sum(G * M) + eta * np.sum(sel(L - I0)**2)
+ return np.sum((xs1.dot(L) - ns * G.dot(xt)) ** 2) + mu * \
+ np.sum(G * M) + eta * np.sum(sel(L - I0) ** 2)
def solve_L(G):
""" solve L problem with fixed G (least square)"""
@@ -372,10 +373,11 @@ def joint_OT_mapping_linear(xs, xt, mu=1, eta=0.001, bias=False, verbose=False,
xsi = xs1.dot(L)
def f(G):
- return np.sum((xsi - ns * G.dot(xt))**2)
+ return np.sum((xsi - ns * G.dot(xt)) ** 2)
def df(G):
return -2 * ns * (xsi - ns * G.dot(xt)).dot(xt.T)
+
G = cg(a, b, M, 1.0 / mu, f, df, G0=G0,
numItermax=numInnerItermax, stopThr=stopInnerThr)
return G
@@ -562,7 +564,7 @@ def joint_OT_mapping_kernel(xs, xt, mu=1, eta=0.001, kerneltype='gaussian',
def loss(L, G):
"""Compute full loss"""
- return np.sum((K1.dot(L) - ns * G.dot(xt))**2) + mu * \
+ return np.sum((K1.dot(L) - ns * G.dot(xt)) ** 2) + mu * \
np.sum(G * M) + eta * np.trace(L.T.dot(Kreg).dot(L))
def solve_L_nobias(G):
@@ -580,10 +582,11 @@ def joint_OT_mapping_kernel(xs, xt, mu=1, eta=0.001, kerneltype='gaussian',
xsi = K1.dot(L)
def f(G):
- return np.sum((xsi - ns * G.dot(xt))**2)
+ return np.sum((xsi - ns * G.dot(xt)) ** 2)
def df(G):
return -2 * ns * (xsi - ns * G.dot(xt)).dot(xt.T)
+
G = cg(a, b, M, 1.0 / mu, f, df, G0=G0,
numItermax=numInnerItermax, stopThr=stopInnerThr)
return G
@@ -745,6 +748,139 @@ def OT_mapping_linear(xs, xt, reg=1e-6, ws=None,
return A, b
+def emd_laplace(a, b, xs, xt, M, sim='knn', sim_param=None, reg='pos', eta=1, alpha=.5,
+ numItermax=100, stopThr=1e-9, numInnerItermax=100000,
+ stopInnerThr=1e-9, log=False, verbose=False):
+ r"""Solve the optimal transport problem (OT) with Laplacian regularization
+
+ .. math::
+ \gamma = arg\min_\gamma <\gamma,M>_F + eta\Omega_\alpha(\gamma)
+
+ s.t.\ \gamma 1 = a
+
+ \gamma^T 1= b
+
+ \gamma\geq 0
+
+ where:
+
+ - a and b are source and target weights (sum to 1)
+ - xs and xt are source and target samples
+ - M is the (ns,nt) metric cost matrix
+ - :math:`\Omega_\alpha` is the Laplacian regularization term
+ :math:`\Omega_\alpha = (1-\alpha)/n_s^2\sum_{i,j}S^s_{i,j}\|T(\mathbf{x}^s_i)-T(\mathbf{x}^s_j)\|^2+\alpha/n_t^2\sum_{i,j}S^t_{i,j}^'\|T(\mathbf{x}^t_i)-T(\mathbf{x}^t_j)\|^2`
+ with :math:`S^s_{i,j}, S^t_{i,j}` denoting source and target similarity matrices and :math:`T(\cdot)` being a barycentric mapping
+
+ The algorithm used for solving the problem is the conditional gradient algorithm as proposed in [5].
+
+ Parameters
+ ----------
+ a : np.ndarray (ns,)
+ samples weights in the source domain
+ b : np.ndarray (nt,)
+ samples weights in the target domain
+ xs : np.ndarray (ns,d)
+ samples in the source domain
+ xt : np.ndarray (nt,d)
+ samples in the target domain
+ M : np.ndarray (ns,nt)
+ loss matrix
+ sim : string, optional
+ Type of similarity ('knn' or 'gauss') used to construct the Laplacian.
+ sim_param : int or float, optional
+ Parameter (number of the nearest neighbors for sim='knn'
+ or bandwidth for sim='gauss') used to compute the Laplacian.
+ reg : string
+ Type of Laplacian regularization
+ eta : float
+ Regularization term for Laplacian regularization
+ alpha : float
+ Regularization term for source domain's importance in regularization
+ numItermax : int, optional
+ Max number of iterations
+ stopThr : float, optional
+ Stop threshold on error (inner emd solver) (>0)
+ numInnerItermax : int, optional
+ Max number of iterations (inner CG solver)
+ stopInnerThr : float, optional
+ Stop threshold on error (inner CG solver) (>0)
+ verbose : bool, optional
+ Print information along iterations
+ log : bool, optional
+ record log if True
+
+ Returns
+ -------
+ gamma : (ns x nt) ndarray
+ Optimal transportation matrix for the given parameters
+ log : dict
+ log dictionary return only if log==True in parameters
+
+
+ References
+ ----------
+
+ .. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy,
+ "Optimal Transport for Domain Adaptation," in IEEE
+ Transactions on Pattern Analysis and Machine Intelligence ,
+ vol.PP, no.99, pp.1-1
+ .. [30] R. Flamary, N. Courty, D. Tuia, A. Rakotomamonjy,
+ "Optimal transport with Laplacian regularization: Applications to domain adaptation and shape matching,"
+ in NIPS Workshop on Optimal Transport and Machine Learning OTML, 2014.
+
+ See Also
+ --------
+ ot.lp.emd : Unregularized OT
+ ot.optim.cg : General regularized OT
+
+ """
+ if not isinstance(sim_param, (int, float, type(None))):
+ raise ValueError(
+ 'Similarity parameter should be an int or a float. Got {type} instead.'.format(type=type(sim_param).__name__))
+
+ if sim == 'gauss':
+ if sim_param is None:
+ sim_param = 1 / (2 * (np.mean(dist(xs, xs, 'sqeuclidean')) ** 2))
+ sS = kernel(xs, xs, method=sim, sigma=sim_param)
+ sT = kernel(xt, xt, method=sim, sigma=sim_param)
+
+ elif sim == 'knn':
+ if sim_param is None:
+ sim_param = 3
+
+ from sklearn.neighbors import kneighbors_graph
+
+ sS = kneighbors_graph(X=xs, n_neighbors=int(sim_param)).toarray()
+ sS = (sS + sS.T) / 2
+ sT = kneighbors_graph(xt, n_neighbors=int(sim_param)).toarray()
+ sT = (sT + sT.T) / 2
+ else:
+ raise ValueError('Unknown similarity type {sim}. Currently supported similarity types are "knn" and "gauss".'.format(sim=sim))
+
+ lS = laplacian(sS)
+ lT = laplacian(sT)
+
+ def f(G):
+ return alpha * np.trace(np.dot(xt.T, np.dot(G.T, np.dot(lS, np.dot(G, xt))))) \
+ + (1 - alpha) * np.trace(np.dot(xs.T, np.dot(G, np.dot(lT, np.dot(G.T, xs)))))
+
+ ls2 = lS + lS.T
+ lt2 = lT + lT.T
+ xt2 = np.dot(xt, xt.T)
+
+ if reg == 'disp':
+ Cs = -eta * alpha / xs.shape[0] * dots(ls2, xs, xt.T)
+ Ct = -eta * (1 - alpha) / xt.shape[0] * dots(xs, xt.T, lt2)
+ M = M + Cs + Ct
+
+ def df(G):
+ return alpha * np.dot(ls2, np.dot(G, xt2))\
+ + (1 - alpha) * np.dot(xs, np.dot(xs.T, np.dot(G, lt2)))
+
+ return cg(a, b, M, reg=eta, f=f, df=df, G0=None, numItermax=numItermax, numItermaxEmd=numInnerItermax,
+ stopThr=stopThr, stopThr2=stopInnerThr, verbose=verbose, log=log)
+
+
def distribution_estimation_uniform(X):
"""estimates a uniform distribution from an array of samples X
@@ -772,7 +908,8 @@ class BaseTransport(BaseEstimator):
at the class level in their ``__init__`` as explicit keyword
arguments (no ``*args`` or ``**kwargs``).
- fit method should:
+ the fit method should:
+
- estimate a cost matrix and store it in a `cost_` attribute
- estimate a coupling matrix and store it in a `coupling_`
attribute
@@ -783,6 +920,9 @@ class BaseTransport(BaseEstimator):
transform method should always get as input a Xs parameter
inverse_transform method should always get as input a Xt parameter
+
+ transform_labels method should always get as input a ys parameter
+ inverse_transform_labels method should always get as input a yt parameter
"""
def fit(self, Xs=None, ys=None, Xt=None, yt=None):
@@ -794,7 +934,7 @@ class BaseTransport(BaseEstimator):
Xs : array-like, shape (n_source_samples, n_features)
The training input samples.
ys : array-like, shape (n_source_samples,)
- The class labels
+ The training class labels
Xt : array-like, shape (n_target_samples, n_features)
The training input samples.
yt : array-like, shape (n_target_samples,)
@@ -855,7 +995,7 @@ class BaseTransport(BaseEstimator):
Xs : array-like, shape (n_source_samples, n_features)
The training input samples.
ys : array-like, shape (n_source_samples,)
- The class labels
+ The class labels for training samples
Xt : array-like, shape (n_target_samples, n_features)
The training input samples.
yt : array-like, shape (n_target_samples,)
@@ -879,13 +1019,13 @@ class BaseTransport(BaseEstimator):
Parameters
----------
Xs : array-like, shape (n_source_samples, n_features)
- The training input samples.
+ The source input samples.
ys : array-like, shape (n_source_samples,)
- The class labels
+ The class labels for source samples
Xt : array-like, shape (n_target_samples, n_features)
- The training input samples.
+ The target input samples.
yt : array-like, shape (n_target_samples,)
- The class labels. If some target samples are unlabeled, fill the
+ The class labels for target. If some target samples are unlabeled, fill the
yt's elements with -1.
Warning: Note that, due to this convention -1 cannot be used as a
@@ -921,7 +1061,6 @@ class BaseTransport(BaseEstimator):
transp_Xs = []
for bi in batch_ind:
-
# get the nearest neighbor in the source domain
D0 = dist(Xs[bi], self.xs_)
idx = np.argmin(D0, axis=1)
@@ -941,20 +1080,64 @@ class BaseTransport(BaseEstimator):
return transp_Xs
+ def transform_labels(self, ys=None):
+ """Propagate source labels ys to obtain estimated target labels as in [27]
+
+ Parameters
+ ----------
+ ys : array-like, shape (n_source_samples,)
+ The source class labels
+
+ Returns
+ -------
+ transp_ys : array-like, shape (n_target_samples, nb_classes)
+ Estimated soft target labels.
+
+ References
+ ----------
+
+ .. [27] Ievgen Redko, Nicolas Courty, Rémi Flamary, Devis Tuia
+ "Optimal transport for multi-source domain adaptation under target shift",
+ International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.
+
+ """
+
+ # check the necessary inputs parameters are here
+ if check_params(ys=ys):
+
+ ysTemp = label_normalization(np.copy(ys))
+ classes = np.unique(ysTemp)
+ n = len(classes)
+ D1 = np.zeros((n, len(ysTemp)))
+
+ # perform label propagation
+ transp = self.coupling_ / np.sum(self.coupling_, 1)[:, None]
+
+ # set nans to 0
+ transp[~ np.isfinite(transp)] = 0
+
+ for c in classes:
+ D1[int(c), ysTemp == c] = 1
+
+ # compute propagated labels
+ transp_ys = np.dot(D1, transp)
+
+ return transp_ys.T
+
def inverse_transform(self, Xs=None, ys=None, Xt=None, yt=None,
batch_size=128):
- """Transports target samples Xt onto target samples Xs
+ """Transports target samples Xt onto source samples Xs
Parameters
----------
Xs : array-like, shape (n_source_samples, n_features)
- The training input samples.
+ The source input samples.
ys : array-like, shape (n_source_samples,)
- The class labels
+ The source class labels
Xt : array-like, shape (n_target_samples, n_features)
- The training input samples.
+ The target input samples.
yt : array-like, shape (n_target_samples,)
- The class labels. If some target samples are unlabeled, fill the
+ The target class labels. If some target samples are unlabeled, fill the
yt's elements with -1.
Warning: Note that, due to this convention -1 cannot be used as a
@@ -990,7 +1173,6 @@ class BaseTransport(BaseEstimator):
transp_Xt = []
for bi in batch_ind:
-
D0 = dist(Xt[bi], self.xt_)
idx = np.argmin(D0, axis=1)
@@ -1009,6 +1191,41 @@ class BaseTransport(BaseEstimator):
return transp_Xt
+ def inverse_transform_labels(self, yt=None):
+ """Propagate target labels yt to obtain estimated source labels ys
+
+ Parameters
+ ----------
+ yt : array-like, shape (n_target_samples,)
+
+ Returns
+ -------
+ transp_ys : array-like, shape (n_source_samples, nb_classes)
+ Estimated soft source labels.
+ """
+
+ # check the necessary inputs parameters are here
+ if check_params(yt=yt):
+
+ ytTemp = label_normalization(np.copy(yt))
+ classes = np.unique(ytTemp)
+ n = len(classes)
+ D1 = np.zeros((n, len(ytTemp)))
+
+ # perform label propagation
+ transp = self.coupling_ / np.sum(self.coupling_, 1)[:, None]
+
+ # set nans to 0
+ transp[~ np.isfinite(transp)] = 0
+
+ for c in classes:
+ D1[int(c), ytTemp == c] = 1
+
+ # compute propagated samples
+ transp_ys = np.dot(D1, transp.T)
+
+ return transp_ys.T
+
class LinearTransport(BaseTransport):
""" OT linear operator between empirical distributions
@@ -1055,7 +1272,6 @@ class LinearTransport(BaseTransport):
def __init__(self, reg=1e-8, bias=True, log=False,
distribution_estimation=distribution_estimation_uniform):
-
self.bias = bias
self.log = log
self.reg = reg
@@ -1136,7 +1352,6 @@ class LinearTransport(BaseTransport):
# check the necessary inputs parameters are here
if check_params(Xs=Xs):
-
transp_Xs = Xs.dot(self.A_) + self.B_
return transp_Xs
@@ -1170,7 +1385,6 @@ class LinearTransport(BaseTransport):
# check the necessary inputs parameters are here
if check_params(Xt=Xt):
-
transp_Xt = Xt.dot(self.A1_) + self.B1_
return transp_Xt
@@ -1224,6 +1438,9 @@ class SinkhornTransport(BaseTransport):
.. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal
Transport, Advances in Neural Information Processing Systems (NIPS)
26, 2013
+ .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
+ Regularized discrete optimal transport. SIAM Journal on Imaging
+ Sciences, 7(3), 1853-1882.
"""
def __init__(self, reg_e=1., max_iter=1000,
@@ -1231,7 +1448,6 @@ class SinkhornTransport(BaseTransport):
metric="sqeuclidean", norm=None,
distribution_estimation=distribution_estimation_uniform,
out_of_sample_map='ferradans', limit_max=np.infty):
-
self.reg_e = reg_e
self.max_iter = max_iter
self.tol = tol
@@ -1323,13 +1539,15 @@ class EMDTransport(BaseTransport):
.. [1] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy,
"Optimal Transport for Domain Adaptation," in IEEE Transactions
on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1
+ .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
+ Regularized discrete optimal transport. SIAM Journal on Imaging
+ Sciences, 7(3), 1853-1882.
"""
def __init__(self, metric="sqeuclidean", norm=None, log=False,
distribution_estimation=distribution_estimation_uniform,
out_of_sample_map='ferradans', limit_max=10,
max_iter=100000):
-
self.metric = metric
self.norm = norm
self.log = log
@@ -1431,7 +1649,9 @@ class SinkhornLpl1Transport(BaseTransport):
.. [2] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015).
Generalized conditional gradient: analysis of convergence
and applications. arXiv preprint arXiv:1510.06567.
-
+ .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
+ Regularized discrete optimal transport. SIAM Journal on Imaging
+ Sciences, 7(3), 1853-1882.
"""
def __init__(self, reg_e=1., reg_cl=0.1,
@@ -1440,7 +1660,6 @@ class SinkhornLpl1Transport(BaseTransport):
metric="sqeuclidean", norm=None,
distribution_estimation=distribution_estimation_uniform,
out_of_sample_map='ferradans', limit_max=np.infty):
-
self.reg_e = reg_e
self.reg_cl = reg_cl
self.max_iter = max_iter
@@ -1481,7 +1700,6 @@ class SinkhornLpl1Transport(BaseTransport):
# check the necessary inputs parameters are here
if check_params(Xs=Xs, Xt=Xt, ys=ys):
-
super(SinkhornLpl1Transport, self).fit(Xs, ys, Xt, yt)
returned_ = sinkhorn_lpl1_mm(
@@ -1499,6 +1717,127 @@ class SinkhornLpl1Transport(BaseTransport):
return self
+class EMDLaplaceTransport(BaseTransport):
+
+ """Domain Adapatation OT method based on Earth Mover's Distance with Laplacian regularization
+
+ Parameters
+ ----------
+ reg_type : string optional (default='pos')
+ Type of the regularization term: 'pos' and 'disp' for
+ regularization term defined in [2] and [6], respectively.
+ reg_lap : float, optional (default=1)
+ Laplacian regularization parameter
+ reg_src : float, optional (default=0.5)
+ Source relative importance in regularization
+ metric : string, optional (default="sqeuclidean")
+ The ground metric for the Wasserstein problem
+ norm : string, optional (default=None)
+ If given, normalize the ground metric to avoid numerical errors that
+ can occur with large metric values.
+ similarity : string, optional (default="knn")
+ The similarity to use either knn or gaussian
+ similarity_param : int or float, optional (default=None)
+ Parameter for the similarity: number of nearest neighbors or bandwidth
+ if similarity="knn" or "gaussian", respectively. If None is provided,
+ it is set to 3 or the average pairwise squared Euclidean distance, respectively.
+ max_iter : int, optional (default=100)
+ Max number of BCD iterations
+ tol : float, optional (default=1e-5)
+ Stop threshold on relative loss decrease (>0)
+ max_inner_iter : int, optional (default=10)
+ Max number of iterations (inner CG solver)
+ inner_tol : float, optional (default=1e-6)
+ Stop threshold on error (inner CG solver) (>0)
+ log : int, optional (default=False)
+ Controls the logs of the optimization algorithm
+ distribution_estimation : callable, optional (defaults to the uniform)
+ The kind of distribution estimation to employ
+ out_of_sample_map : string, optional (default="ferradans")
+ The kind of out of sample mapping to apply to transport samples
+ from a domain into another one. Currently the only possible option is
+ "ferradans" which uses the method proposed in [6].
+
+ Attributes
+ ----------
+ coupling_ : array-like, shape (n_source_samples, n_target_samples)
+ The optimal coupling
+
+ References
+ ----------
+ .. [1] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy,
+ "Optimal Transport for Domain Adaptation," in IEEE Transactions
+ on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1
+ .. [2] R. Flamary, N. Courty, D. Tuia, A. Rakotomamonjy,
+ "Optimal transport with Laplacian regularization: Applications to domain adaptation and shape matching,"
+ in NIPS Workshop on Optimal Transport and Machine Learning OTML, 2014.
+ .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
+ Regularized discrete optimal transport. SIAM Journal on Imaging
+ Sciences, 7(3), 1853-1882.
+ """
+
+ def __init__(self, reg_type='pos', reg_lap=1., reg_src=1., metric="sqeuclidean",
+ norm=None, similarity="knn", similarity_param=None, max_iter=100, tol=1e-9,
+ max_inner_iter=100000, inner_tol=1e-9, log=False, verbose=False,
+ distribution_estimation=distribution_estimation_uniform,
+ out_of_sample_map='ferradans'):
+ self.reg = reg_type
+ self.reg_lap = reg_lap
+ self.reg_src = reg_src
+ self.metric = metric
+ self.norm = norm
+ self.similarity = similarity
+ self.sim_param = similarity_param
+ self.max_iter = max_iter
+ self.tol = tol
+ self.max_inner_iter = max_inner_iter
+ self.inner_tol = inner_tol
+ self.log = log
+ self.verbose = verbose
+ self.distribution_estimation = distribution_estimation
+ self.out_of_sample_map = out_of_sample_map
+
+ def fit(self, Xs, ys=None, Xt=None, yt=None):
+ """Build a coupling matrix from source and target sets of samples
+ (Xs, ys) and (Xt, yt)
+
+ Parameters
+ ----------
+ Xs : array-like, shape (n_source_samples, n_features)
+ The training input samples.
+ ys : array-like, shape (n_source_samples,)
+ The class labels
+ Xt : array-like, shape (n_target_samples, n_features)
+ The training input samples.
+ yt : array-like, shape (n_target_samples,)
+ The class labels. If some target samples are unlabeled, fill the
+ yt's elements with -1.
+
+ Warning: Note that, due to this convention -1 cannot be used as a
+ class label
+
+ Returns
+ -------
+ self : object
+ Returns self.
+ """
+
+ super(EMDLaplaceTransport, self).fit(Xs, ys, Xt, yt)
+
+ returned_ = emd_laplace(a=self.mu_s, b=self.mu_t, xs=self.xs_,
+ xt=self.xt_, M=self.cost_, sim=self.similarity, sim_param=self.sim_param, reg=self.reg, eta=self.reg_lap,
+ alpha=self.reg_src, numItermax=self.max_iter, stopThr=self.tol, numInnerItermax=self.max_inner_iter,
+ stopInnerThr=self.inner_tol, log=self.log, verbose=self.verbose)
+
+ # coupling estimation
+ if self.log:
+ self.coupling_, self.log_ = returned_
+ else:
+ self.coupling_ = returned_
+ self.log_ = dict()
+ return self
+
+
class SinkhornL1l2Transport(BaseTransport):
"""Domain Adapatation OT method based on sinkhorn algorithm +
@@ -1554,7 +1893,9 @@ class SinkhornL1l2Transport(BaseTransport):
.. [2] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015).
Generalized conditional gradient: analysis of convergence
and applications. arXiv preprint arXiv:1510.06567.
-
+ .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
+ Regularized discrete optimal transport. SIAM Journal on Imaging
+ Sciences, 7(3), 1853-1882.
"""
def __init__(self, reg_e=1., reg_cl=0.1,
@@ -1563,7 +1904,6 @@ class SinkhornL1l2Transport(BaseTransport):
metric="sqeuclidean", norm=None,
distribution_estimation=distribution_estimation_uniform,
out_of_sample_map='ferradans', limit_max=10):
-
self.reg_e = reg_e
self.reg_cl = reg_cl
self.max_iter = max_iter
@@ -1685,7 +2025,6 @@ class MappingTransport(BaseEstimator):
norm=None, kernel="linear", sigma=1, max_iter=100, tol=1e-5,
max_inner_iter=10, inner_tol=1e-6, log=False, verbose=False,
verbose2=False):
-
self.metric = metric
self.norm = norm
self.mu = mu
@@ -1848,7 +2187,9 @@ class UnbalancedSinkhornTransport(BaseTransport):
.. [1] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016).
Scaling algorithms for unbalanced transport problems. arXiv preprint
arXiv:1607.05816.
-
+ .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
+ Regularized discrete optimal transport. SIAM Journal on Imaging
+ Sciences, 7(3), 1853-1882.
"""
def __init__(self, reg_e=1., reg_m=0.1, method='sinkhorn',
@@ -1856,7 +2197,6 @@ class UnbalancedSinkhornTransport(BaseTransport):
metric="sqeuclidean", norm=None,
distribution_estimation=distribution_estimation_uniform,
out_of_sample_map='ferradans', limit_max=10):
-
self.reg_e = reg_e
self.reg_m = reg_m
self.method = method
@@ -1914,3 +2254,267 @@ class UnbalancedSinkhornTransport(BaseTransport):
self.log_ = dict()
return self
+
+
+class JCPOTTransport(BaseTransport):
+
+ """Domain Adapatation OT method for multi-source target shift based on Wasserstein barycenter algorithm.
+
+ Parameters
+ ----------
+ reg_e : float, optional (default=1)
+ Entropic regularization parameter
+ max_iter : int, float, optional (default=10)
+ The minimum number of iteration before stopping the optimization
+ algorithm if no it has not converged
+ tol : float, optional (default=10e-9)
+ Stop threshold on error (inner sinkhorn solver) (>0)
+ verbose : bool, optional (default=False)
+ Controls the verbosity of the optimization algorithm
+ log : bool, optional (default=False)
+ Controls the logs of the optimization algorithm
+ metric : string, optional (default="sqeuclidean")
+ The ground metric for the Wasserstein problem
+ norm : string, optional (default=None)
+ If given, normalize the ground metric to avoid numerical errors that
+ can occur with large metric values.
+ distribution_estimation : callable, optional (defaults to the uniform)
+ The kind of distribution estimation to employ
+ out_of_sample_map : string, optional (default="ferradans")
+ The kind of out of sample mapping to apply to transport samples
+ from a domain into another one. Currently the only possible option is
+ "ferradans" which uses the method proposed in [6].
+
+ Attributes
+ ----------
+ coupling_ : list of array-like objects, shape K x (n_source_samples, n_target_samples)
+ A set of optimal couplings between each source domain and the target domain
+ proportions_ : array-like, shape (n_classes,)
+ Estimated class proportions in the target domain
+ log_ : dictionary
+ The dictionary of log, empty dic if parameter log is not True
+
+ References
+ ----------
+
+ .. [1] Ievgen Redko, Nicolas Courty, Rémi Flamary, Devis Tuia
+ "Optimal transport for multi-source domain adaptation under target shift",
+ International Conference on Artificial Intelligence and Statistics (AISTATS),
+ vol. 89, p.849-858, 2019.
+
+ .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
+ Regularized discrete optimal transport. SIAM Journal on Imaging
+ Sciences, 7(3), 1853-1882.
+
+
+ """
+
+ def __init__(self, reg_e=.1, max_iter=10,
+ tol=10e-9, verbose=False, log=False,
+ metric="sqeuclidean",
+ out_of_sample_map='ferradans'):
+ self.reg_e = reg_e
+ self.max_iter = max_iter
+ self.tol = tol
+ self.verbose = verbose
+ self.log = log
+ self.metric = metric
+ self.out_of_sample_map = out_of_sample_map
+
+ def fit(self, Xs, ys=None, Xt=None, yt=None):
+ """Building coupling matrices from a list of source and target sets of samples
+ (Xs, ys) and (Xt, yt)
+
+ Parameters
+ ----------
+ Xs : list of K array-like objects, shape K x (nk_source_samples, n_features)
+ A list of the training input samples.
+ ys : list of K array-like objects, shape K x (nk_source_samples,)
+ A list of the class labels
+ Xt : array-like, shape (n_target_samples, n_features)
+ The training input samples.
+ yt : array-like, shape (n_target_samples,)
+ The class labels. If some target samples are unlabeled, fill the
+ yt's elements with -1.
+
+ Warning: Note that, due to this convention -1 cannot be used as a
+ class label
+
+ Returns
+ -------
+ self : object
+ Returns self.
+ """
+
+ # check the necessary inputs parameters are here
+ if check_params(Xs=Xs, Xt=Xt, ys=ys):
+
+ self.xs_ = Xs
+ self.xt_ = Xt
+
+ returned_ = jcpot_barycenter(Xs=Xs, Ys=ys, Xt=Xt, reg=self.reg_e,
+ metric=self.metric, distrinumItermax=self.max_iter, stopThr=self.tol,
+ verbose=self.verbose, log=True)
+
+ self.coupling_ = returned_[1]['gamma']
+
+ # deal with the value of log
+ if self.log:
+ self.proportions_, self.log_ = returned_
+ else:
+ self.proportions_ = returned_
+ self.log_ = dict()
+
+ return self
+
+ def transform(self, Xs=None, ys=None, Xt=None, yt=None, batch_size=128):
+ """Transports source samples Xs onto target ones Xt
+
+ Parameters
+ ----------
+ Xs : list of K array-like objects, shape K x (nk_source_samples, n_features)
+ A list of the training input samples.
+ ys : list of K array-like objects, shape K x (nk_source_samples,)
+ A list of the class labels
+ Xt : array-like, shape (n_target_samples, n_features)
+ The training input samples.
+ yt : array-like, shape (n_target_samples,)
+ The class labels. If some target samples are unlabeled, fill the
+ yt's elements with -1.
+
+ Warning: Note that, due to this convention -1 cannot be used as a
+ class label
+ batch_size : int, optional (default=128)
+ The batch size for out of sample inverse transform
+ """
+
+ transp_Xs = []
+
+ # check the necessary inputs parameters are here
+ if check_params(Xs=Xs):
+
+ if all([np.allclose(x, y) for x, y in zip(self.xs_, Xs)]):
+
+ # perform standard barycentric mapping for each source domain
+
+ for coupling in self.coupling_:
+ transp = coupling / np.sum(coupling, 1)[:, None]
+
+ # set nans to 0
+ transp[~ np.isfinite(transp)] = 0
+
+ # compute transported samples
+ transp_Xs.append(np.dot(transp, self.xt_))
+ else:
+
+ # perform out of sample mapping
+ indices = np.arange(Xs.shape[0])
+ batch_ind = [
+ indices[i:i + batch_size]
+ for i in range(0, len(indices), batch_size)]
+
+ transp_Xs = []
+
+ for bi in batch_ind:
+ transp_Xs_ = []
+
+ # get the nearest neighbor in the sources domains
+ xs = np.concatenate(self.xs_, axis=0)
+ idx = np.argmin(dist(Xs[bi], xs), axis=1)
+
+ # transport the source samples
+ for coupling in self.coupling_:
+ transp = coupling / np.sum(
+ coupling, 1)[:, None]
+ transp[~ np.isfinite(transp)] = 0
+ transp_Xs_.append(np.dot(transp, self.xt_))
+
+ transp_Xs_ = np.concatenate(transp_Xs_, axis=0)
+
+ # define the transported points
+ transp_Xs_ = transp_Xs_[idx, :] + Xs[bi] - xs[idx, :]
+ transp_Xs.append(transp_Xs_)
+
+ transp_Xs = np.concatenate(transp_Xs, axis=0)
+
+ return transp_Xs
+
+ def transform_labels(self, ys=None):
+ """Propagate source labels ys to obtain target labels as in [27]
+
+ Parameters
+ ----------
+ ys : list of K array-like objects, shape K x (nk_source_samples,)
+ A list of the class labels
+
+ Returns
+ -------
+ yt : array-like, shape (n_target_samples, nb_classes)
+ Estimated soft target labels.
+ """
+
+ # check the necessary inputs parameters are here
+ if check_params(ys=ys):
+ yt = np.zeros((len(np.unique(np.concatenate(ys))), self.xt_.shape[0]))
+ for i in range(len(ys)):
+ ysTemp = label_normalization(np.copy(ys[i]))
+ classes = np.unique(ysTemp)
+ n = len(classes)
+ ns = len(ysTemp)
+
+ # perform label propagation
+ transp = self.coupling_[i] / np.sum(self.coupling_[i], 1)[:, None]
+
+ # set nans to 0
+ transp[~ np.isfinite(transp)] = 0
+
+ if self.log:
+ D1 = self.log_['D1'][i]
+ else:
+ D1 = np.zeros((n, ns))
+
+ for c in classes:
+ D1[int(c), ysTemp == c] = 1
+
+ # compute propagated labels
+ yt = yt + np.dot(D1, transp) / len(ys)
+
+ return yt.T
+
+ def inverse_transform_labels(self, yt=None):
+ """Propagate source labels ys to obtain target labels
+
+ Parameters
+ ----------
+ yt : array-like, shape (n_source_samples,)
+ The target class labels
+
+ Returns
+ -------
+ transp_ys : list of K array-like objects, shape K x (nk_source_samples, nb_classes)
+ A list of estimated soft source labels
+ """
+
+ # check the necessary inputs parameters are here
+ if check_params(yt=yt):
+ transp_ys = []
+ ytTemp = label_normalization(np.copy(yt))
+ classes = np.unique(ytTemp)
+ n = len(classes)
+ D1 = np.zeros((n, len(ytTemp)))
+
+ for c in classes:
+ D1[int(c), ytTemp == c] = 1
+
+ for i in range(len(self.xs_)):
+
+ # perform label propagation
+ transp = self.coupling_[i] / np.sum(self.coupling_[i], 1)[:, None]
+
+ # set nans to 0
+ transp[~ np.isfinite(transp)] = 0
+
+ # compute propagated labels
+ transp_ys.append(np.dot(D1, transp.T).T)
+
+ return transp_ys