summaryrefslogtreecommitdiff
path: root/ot
diff options
context:
space:
mode:
Diffstat (limited to 'ot')
-rw-r--r--ot/__init__.py2
-rw-r--r--ot/stochastic.py800
2 files changed, 801 insertions, 1 deletions
diff --git a/ot/__init__.py b/ot/__init__.py
index 995ce33..1dde390 100644
--- a/ot/__init__.py
+++ b/ot/__init__.py
@@ -19,7 +19,7 @@ from . import datasets
from . import da
from . import gromov
from . import smooth
-
+from . import stochastic
# OT functions
from .lp import emd, emd2
diff --git a/ot/stochastic.py b/ot/stochastic.py
new file mode 100644
index 0000000..5e8206e
--- /dev/null
+++ b/ot/stochastic.py
@@ -0,0 +1,800 @@
+# Author: Kilian Fatras <kilian.fatras@gmail.com>
+#
+# License: MIT License
+
+import numpy as np
+
+
+##############################################################################
+# Optimization toolbox for SEMI - DUAL problems
+##############################################################################
+
+
+def coordinate_grad_semi_dual(b, M, reg, beta, i):
+ '''
+ Compute the coordinate gradient update for regularized discrete
+ distributions for (i, :)
+
+ The function computes the gradient of the semi dual problem:
+
+ .. math::
+ \W_\varepsilon(a, b) = \max_\v \sum_i (\sum_j v_j * b_j
+ - \reg log(\sum_j exp((v_j - M_{i,j})/reg) * b_j)) * a_i
+
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - v is a dual variable in R^J
+ - reg is the regularization term
+ - a and b are source and target weights (sum to 1)
+
+ The algorithm used for solving the problem is the ASGD & SAG algorithms
+ as proposed in [18]_ [alg.1 & alg.2]
+
+
+ Parameters
+ ----------
+
+ b : np.ndarray(nt,),
+ target measure
+ M : np.ndarray(ns, nt),
+ cost matrix
+ reg : float nu,
+ Regularization term > 0
+ v : np.ndarray(nt,),
+ optimization vector
+ i : number int,
+ picked number i
+
+ Returns
+ -------
+
+ coordinate gradient : np.ndarray(nt,)
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 300000
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> method = "ASGD"
+ >>> asgd_pi = stochastic.solve_semi_dual_entropic(a, b, M, reg,
+ method, numItermax)
+ >>> print(asgd_pi)
+
+ References
+ ----------
+
+ [Genevay et al., 2016] :
+ Stochastic Optimization for Large-scale Optimal Transport,
+ Advances in Neural Information Processing Systems (2016),
+ arXiv preprint arxiv:1605.08527.
+
+ '''
+
+ r = M[i, :] - beta
+ exp_beta = np.exp(-r / reg) * b
+ khi = exp_beta / (np.sum(exp_beta))
+ return b - khi
+
+
+def sag_entropic_transport(a, b, M, reg, numItermax=10000, lr=None):
+ '''
+ Compute the SAG algorithm to solve the regularized discrete measures
+ optimal transport max problem
+
+ The function solves the following optimization problem:
+
+ .. math::
+ \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
+ s.t. \gamma 1 = a
+ \gamma^T 1= b
+ \gamma \geq 0
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - :math:`\Omega` is the entropic regularization term
+ :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
+ - a and b are source and target weights (sum to 1)
+ The algorithm used for solving the problem is the SAG algorithm
+ as proposed in [18]_ [alg.1]
+
+
+ Parameters
+ ----------
+
+ a : np.ndarray(ns,),
+ source measure
+ b : np.ndarray(nt,),
+ target measure
+ M : np.ndarray(ns, nt),
+ cost matrix
+ reg : float number,
+ Regularization term > 0
+ numItermax : int number
+ number of iteration
+ lr : float number
+ learning rate
+
+ Returns
+ -------
+
+ v : np.ndarray(nt,)
+ dual variable
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 300000
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> method = "ASGD"
+ >>> asgd_pi = stochastic.solve_semi_dual_entropic(a, b, M, reg,
+ method, numItermax)
+ >>> print(asgd_pi)
+
+ References
+ ----------
+
+ [Genevay et al., 2016] :
+ Stochastic Optimization for Large-scale Optimal Transport,
+ Advances in Neural Information Processing Systems (2016),
+ arXiv preprint arxiv:1605.08527.
+ '''
+
+ if lr is None:
+ lr = 1. / max(a / reg)
+ n_source = np.shape(M)[0]
+ n_target = np.shape(M)[1]
+ cur_beta = np.zeros(n_target)
+ stored_gradient = np.zeros((n_source, n_target))
+ sum_stored_gradient = np.zeros(n_target)
+ for _ in range(numItermax):
+ i = np.random.randint(n_source)
+ cur_coord_grad = a[i] * coordinate_grad_semi_dual(b, M, reg,
+ cur_beta, i)
+ sum_stored_gradient += (cur_coord_grad - stored_gradient[i])
+ stored_gradient[i] = cur_coord_grad
+ cur_beta += lr * (1. / n_source) * sum_stored_gradient
+ return cur_beta
+
+
+def averaged_sgd_entropic_transport(a, b, M, reg, numItermax=300000, lr=None):
+ '''
+ Compute the ASGD algorithm to solve the regularized semi contibous measures
+ optimal transport max problem
+
+ The function solves the following optimization problem:
+
+ .. math::
+ \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
+ s.t. \gamma 1 = a
+ \gamma^T 1= b
+ \gamma \geq 0
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - :math:`\Omega` is the entropic regularization term
+ :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
+ - a and b are source and target weights (sum to 1)
+ The algorithm used for solving the problem is the ASGD algorithm
+ as proposed in [18]_ [alg.2]
+
+
+ Parameters
+ ----------
+
+ b : np.ndarray(nt,),
+ target measure
+ M : np.ndarray(ns, nt),
+ cost matrix
+ reg : float number,
+ Regularization term > 0
+ numItermax : int number
+ number of iteration
+ lr : float number
+ learning rate
+
+
+ Returns
+ -------
+
+ ave_v : np.ndarray(nt,)
+ optimization vector
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 300000
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> method = "ASGD"
+ >>> asgd_pi = stochastic.solve_semi_dual_entropic(a, b, M, reg,
+ method, numItermax)
+ >>> print(asgd_pi)
+
+ References
+ ----------
+
+ [Genevay et al., 2016] :
+ Stochastic Optimization for Large-scale Optimal Transport,
+ Advances in Neural Information Processing Systems (2016),
+ arXiv preprint arxiv:1605.08527.
+ '''
+
+ if lr is None:
+ lr = 1. / max(a / reg)
+ n_source = np.shape(M)[0]
+ n_target = np.shape(M)[1]
+ cur_beta = np.zeros(n_target)
+ ave_beta = np.zeros(n_target)
+ for cur_iter in range(numItermax):
+ k = cur_iter + 1
+ i = np.random.randint(n_source)
+ cur_coord_grad = coordinate_grad_semi_dual(b, M, reg, cur_beta, i)
+ cur_beta += (lr / np.sqrt(k)) * cur_coord_grad
+ ave_beta = (1. / k) * cur_beta + (1 - 1. / k) * ave_beta
+ return ave_beta
+
+
+def c_transform_entropic(b, M, reg, beta):
+ '''
+ The goal is to recover u from the c-transform.
+
+ The function computes the c_transform of a dual variable from the other
+ dual variable:
+
+ .. math::
+ u = v^{c,reg} = -reg \sum_j exp((v - M)/reg) b_j
+
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - u, v are dual variables in R^IxR^J
+ - reg is the regularization term
+
+ It is used to recover an optimal u from optimal v solving the semi dual
+ problem, see Proposition 2.1 of [18]_
+
+
+ Parameters
+ ----------
+
+ b : np.ndarray(nt,)
+ target measure
+ M : np.ndarray(ns, nt)
+ cost matrix
+ reg : float
+ regularization term > 0
+ v : np.ndarray(nt,)
+ dual variable
+
+ Returns
+ -------
+
+ u : np.ndarray(ns,)
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 300000
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> method = "ASGD"
+ >>> asgd_pi = stochastic.solve_semi_dual_entropic(a, b, M, reg,
+ method, numItermax)
+ >>> print(asgd_pi)
+
+ References
+ ----------
+
+ [Genevay et al., 2016] :
+ Stochastic Optimization for Large-scale Optimal Transport,
+ Advances in Neural Information Processing Systems (2016),
+ arXiv preprint arxiv:1605.08527.
+ '''
+
+ n_source = np.shape(M)[0]
+ alpha = np.zeros(n_source)
+ for i in range(n_source):
+ r = M[i, :] - beta
+ min_r = np.min(r)
+ exp_beta = np.exp(-(r - min_r) / reg) * b
+ alpha[i] = min_r - reg * np.log(np.sum(exp_beta))
+ return alpha
+
+
+def solve_semi_dual_entropic(a, b, M, reg, method, numItermax=10000, lr=None,
+ log=False):
+ '''
+ Compute the transportation matrix to solve the regularized discrete
+ measures optimal transport max problem
+
+ The function solves the following optimization problem:
+
+ .. math::
+ \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
+ s.t. \gamma 1 = a
+ \gamma^T 1= b
+ \gamma \geq 0
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - :math:`\Omega` is the entropic regularization term
+ :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
+ - a and b are source and target weights (sum to 1)
+ The algorithm used for solving the problem is the SAG or ASGD algorithms
+ as proposed in [18]_
+
+
+ Parameters
+ ----------
+
+ a : np.ndarray(ns,),
+ source measure
+ b : np.ndarray(nt,),
+ target measure
+ M : np.ndarray(ns, nt),
+ cost matrix
+ reg : float number,
+ Regularization term > 0
+ methode : str,
+ used method (SAG or ASGD)
+ numItermax : int number
+ number of iteration
+ lr : float number
+ learning rate
+ n_source : int number
+ size of the source measure
+ n_target : int number
+ size of the target measure
+ log : bool, optional
+ record log if True
+
+ Returns
+ -------
+
+ pi : np.ndarray(ns, nt)
+ transportation matrix
+ log : dict
+ log dictionary return only if log==True in parameters
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 300000
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> method = "ASGD"
+ >>> asgd_pi = stochastic.solve_semi_dual_entropic(a, b, M, reg,
+ method, numItermax)
+ >>> print(asgd_pi)
+
+ References
+ ----------
+
+ [Genevay et al., 2016] :
+ Stochastic Optimization for Large-scale Optimal Transport,
+ Advances in Neural Information Processing Systems (2016),
+ arXiv preprint arxiv:1605.08527.
+ '''
+
+ if method.lower() == "sag":
+ opt_beta = sag_entropic_transport(a, b, M, reg, numItermax, lr)
+ elif method.lower() == "asgd":
+ opt_beta = averaged_sgd_entropic_transport(a, b, M, reg, numItermax, lr)
+ else:
+ print("Please, select your method between SAG and ASGD")
+ return None
+
+ opt_alpha = c_transform_entropic(b, M, reg, opt_beta)
+ pi = (np.exp((opt_alpha[:, None] + opt_beta[None, :] - M[:, :]) / reg) *
+ a[:, None] * b[None, :])
+
+ if log:
+ log = {}
+ log['alpha'] = opt_alpha
+ log['beta'] = opt_beta
+ return pi, log
+ else:
+ return pi
+
+
+##############################################################################
+# Optimization toolbox for DUAL problems
+##############################################################################
+
+
+def batch_grad_dual_alpha(M, reg, alpha, beta, batch_size, batch_alpha,
+ batch_beta):
+ '''
+ Computes the partial gradient of F_\W_varepsilon
+
+ Compute the partial gradient of the dual problem:
+
+ ..math:
+ \forall i in batch_alpha,
+ grad_alpha_i = 1 * batch_size -
+ sum_{j in batch_beta} exp((alpha_i + beta_j - M_{i,j})/reg)
+
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - alpha, beta are dual variables in R^ixR^J
+ - reg is the regularization term
+ - batch_alpha and batch_beta are list of index
+
+ The algorithm used for solving the dual problem is the SGD algorithm
+ as proposed in [19]_ [alg.1]
+
+ Parameters
+ ----------
+
+ reg : float number,
+ Regularization term > 0
+ M : np.ndarray(ns, nt),
+ cost matrix
+ alpha : np.ndarray(ns,)
+ dual variable
+ beta : np.ndarray(nt,)
+ dual variable
+ batch_size : int number
+ size of the batch
+ batch_alpha : np.ndarray(bs,)
+ batch of index of alpha
+ batch_beta : np.ndarray(bs,)
+ batch of index of beta
+
+ Returns
+ -------
+
+ grad : np.ndarray(ns,)
+ partial grad F in alpha
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 20000
+ >>> lr = 0.1
+ >>> batch_size = 3
+ >>> log = True
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> sgd_dual_pi, log = stochastic.solve_dual_entropic(a, b, M, reg,
+ batch_size,
+ numItermax, lr, log)
+ >>> print(log['alpha'], log['beta'])
+ >>> print(sgd_dual_pi)
+
+ References
+ ----------
+
+ [Seguy et al., 2018] :
+ International Conference on Learning Representation (2018),
+ arXiv preprint arxiv:1711.02283.
+ '''
+
+ grad_alpha = np.zeros(batch_size)
+ grad_alpha[:] = batch_size
+ for j in batch_beta:
+ grad_alpha -= np.exp((alpha[batch_alpha] + beta[j] -
+ M[batch_alpha, j]) / reg)
+ return grad_alpha
+
+
+def batch_grad_dual_beta(M, reg, alpha, beta, batch_size, batch_alpha,
+ batch_beta):
+ '''
+ Computes the partial gradient of F_\W_varepsilon
+
+ Compute the partial gradient of the dual problem:
+
+ ..math:
+ \forall j in batch_beta,
+ grad_beta_j = 1 * batch_size -
+ sum_{i in batch_alpha} exp((alpha_i + beta_j - M_{i,j})/reg)
+
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - alpha, beta are dual variables in R^ixR^J
+ - reg is the regularization term
+ - batch_alpha and batch_beta are list of index
+
+ The algorithm used for solving the dual problem is the SGD algorithm
+ as proposed in [19]_ [alg.1]
+
+ Parameters
+ ----------
+
+ M : np.ndarray(ns, nt),
+ cost matrix
+ reg : float number,
+ Regularization term > 0
+ alpha : np.ndarray(ns,)
+ dual variable
+ beta : np.ndarray(nt,)
+ dual variable
+ batch_size : int number
+ size of the batch
+ batch_alpha : np.ndarray(bs,)
+ batch of index of alpha
+ batch_beta : np.ndarray(bs,)
+ batch of index of beta
+
+ Returns
+ -------
+
+ grad : np.ndarray(ns,)
+ partial grad F in beta
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 20000
+ >>> lr = 0.1
+ >>> batch_size = 3
+ >>> log = True
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> sgd_dual_pi, log = stochastic.solve_dual_entropic(a, b, M, reg,
+ batch_size,
+ numItermax, lr, log)
+ >>> print(log['alpha'], log['beta'])
+ >>> print(sgd_dual_pi)
+
+ References
+ ----------
+
+ [Seguy et al., 2018] :
+ International Conference on Learning Representation (2018),
+ arXiv preprint arxiv:1711.02283.
+
+ '''
+
+ grad_beta = np.zeros(batch_size)
+ grad_beta[:] = batch_size
+ for i in batch_alpha:
+ grad_beta -= np.exp((alpha[i] +
+ beta[batch_beta] - M[i, batch_beta]) / reg)
+ return grad_beta
+
+
+def sgd_entropic_regularization(M, reg, batch_size, numItermax, lr,
+ alternate=True):
+ '''
+ Compute the sgd algorithm to solve the regularized discrete measures
+ optimal transport dual problem
+
+ The function solves the following optimization problem:
+
+ .. math::
+ \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
+ s.t. \gamma 1 = a
+ \gamma^T 1= b
+ \gamma \geq 0
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - :math:`\Omega` is the entropic regularization term
+ :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
+ - a and b are source and target weights (sum to 1)
+
+ Parameters
+ ----------
+
+ M : np.ndarray(ns, nt),
+ cost matrix
+ reg : float number,
+ Regularization term > 0
+ batch_size : int number
+ size of the batch
+ numItermax : int number
+ number of iteration
+ lr : float number
+ learning rate
+ alternate : bool, optional
+ alternating algorithm
+
+ Returns
+ -------
+
+ alpha : np.ndarray(ns,)
+ dual variable
+ beta : np.ndarray(nt,)
+ dual variable
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 20000
+ >>> lr = 0.1
+ >>> batch_size = 3
+ >>> log = True
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> sgd_dual_pi, log = stochastic.solve_dual_entropic(a, b, M, reg,
+ batch_size,
+ numItermax, lr, log)
+ >>> print(log['alpha'], log['beta'])
+ >>> print(sgd_dual_pi)
+
+ References
+ ----------
+
+ [Seguy et al., 2018] :
+ International Conference on Learning Representation (2018),
+ arXiv preprint arxiv:1711.02283.
+ '''
+
+ n_source = np.shape(M)[0]
+ n_target = np.shape(M)[1]
+ cur_alpha = np.random.randn(n_source)
+ cur_beta = np.random.randn(n_target)
+ if alternate:
+ for cur_iter in range(numItermax):
+ k = np.sqrt(cur_iter + 1)
+ batch_alpha = np.random.choice(n_source, batch_size, replace=False)
+ batch_beta = np.random.choice(n_target, batch_size, replace=False)
+ grad_F_alpha = batch_grad_dual_alpha(M, reg, cur_alpha, cur_beta,
+ batch_size, batch_alpha,
+ batch_beta)
+ cur_alpha[batch_alpha] += (lr / k) * grad_F_alpha
+ grad_F_beta = batch_grad_dual_beta(M, reg, cur_alpha, cur_beta,
+ batch_size, batch_alpha,
+ batch_beta)
+ cur_beta[batch_beta] += (lr / k) * grad_F_beta
+
+ else:
+ for cur_iter in range(numItermax):
+ k = np.sqrt(cur_iter + 1)
+ batch_alpha = np.random.choice(n_source, batch_size, replace=False)
+ batch_beta = np.random.choice(n_target, batch_size, replace=False)
+ grad_F_alpha = batch_grad_dual_alpha(M, reg, cur_alpha, cur_beta,
+ batch_size, batch_alpha,
+ batch_beta)
+ grad_F_beta = batch_grad_dual_beta(M, reg, cur_alpha, cur_beta,
+ batch_size, batch_alpha,
+ batch_beta)
+ cur_alpha[batch_alpha] += (lr / k) * grad_F_alpha
+ cur_beta[batch_beta] += (lr / k) * grad_F_beta
+
+ return cur_alpha, cur_beta
+
+
+def solve_dual_entropic(a, b, M, reg, batch_size, numItermax=10000, lr=1,
+ log=False):
+ '''
+ Compute the transportation matrix to solve the regularized discrete measures
+ optimal transport dual problem
+
+ The function solves the following optimization problem:
+
+ .. math::
+ \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma)
+ s.t. \gamma 1 = a
+ \gamma^T 1= b
+ \gamma \geq 0
+ where :
+ - M is the (ns,nt) metric cost matrix
+ - :math:`\Omega` is the entropic regularization term
+ :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})`
+ - a and b are source and target weights (sum to 1)
+
+ Parameters
+ ----------
+
+ a : np.ndarray(ns,),
+ source measure
+ b : np.ndarray(nt,),
+ target measure
+ M : np.ndarray(ns, nt),
+ cost matrix
+ reg : float number,
+ Regularization term > 0
+ batch_size : int number
+ size of the batch
+ numItermax : int number
+ number of iteration
+ lr : float number
+ learning rate
+ log : bool, optional
+ record log if True
+
+ Returns
+ -------
+
+ pi : np.ndarray(ns, nt)
+ transportation matrix
+ log : dict
+ log dictionary return only if log==True in parameters
+
+ Examples
+ --------
+
+ >>> n_source = 7
+ >>> n_target = 4
+ >>> reg = 1
+ >>> numItermax = 20000
+ >>> lr = 0.1
+ >>> batch_size = 3
+ >>> log = True
+ >>> a = ot.utils.unif(n_source)
+ >>> b = ot.utils.unif(n_target)
+ >>> rng = np.random.RandomState(0)
+ >>> X_source = rng.randn(n_source, 2)
+ >>> Y_target = rng.randn(n_target, 2)
+ >>> M = ot.dist(X_source, Y_target)
+ >>> sgd_dual_pi, log = stochastic.solve_dual_entropic(a, b, M, reg,
+ batch_size,
+ numItermax, lr, log)
+ >>> print(log['alpha'], log['beta'])
+ >>> print(sgd_dual_pi)
+
+ References
+ ----------
+
+ [Seguy et al., 2018] :
+ International Conference on Learning Representation (2018),
+ arXiv preprint arxiv:1711.02283.
+ '''
+
+ opt_alpha, opt_beta = sgd_entropic_regularization(M, reg, batch_size,
+ numItermax, lr)
+ pi = (np.exp((opt_alpha[:, None] + opt_beta[None, :] - M[:, :]) / reg) *
+ a[:, None] * b[None, :])
+ if log:
+ log = {}
+ log['alpha'] = opt_alpha
+ log['beta'] = opt_beta
+ return pi, log
+ else:
+ return pi