summaryrefslogtreecommitdiff
path: root/ot
diff options
context:
space:
mode:
Diffstat (limited to 'ot')
-rw-r--r--ot/__init__.py2
-rw-r--r--ot/backend.py876
-rw-r--r--ot/bregman.py72
-rw-r--r--ot/da.py44
-rw-r--r--ot/datasets.py2
-rw-r--r--ot/dr.py2
-rw-r--r--ot/gromov.py59
-rw-r--r--ot/lp/solver_1d.py4
-rw-r--r--ot/optim.py47
-rw-r--r--ot/plot.py4
-rw-r--r--ot/utils.py10
11 files changed, 1020 insertions, 102 deletions
diff --git a/ot/__init__.py b/ot/__init__.py
index b6dc2b4..e436571 100644
--- a/ot/__init__.py
+++ b/ot/__init__.py
@@ -50,7 +50,7 @@ from .gromov import (gromov_wasserstein, gromov_wasserstein2,
# utils functions
from .utils import dist, unif, tic, toc, toq
-__version__ = "0.8.0"
+__version__ = "0.8.1"
__all__ = ['emd', 'emd2', 'emd_1d', 'sinkhorn', 'sinkhorn2', 'utils',
'datasets', 'bregman', 'lp', 'tic', 'toc', 'toq', 'gromov',
diff --git a/ot/backend.py b/ot/backend.py
index a044f84..58b652b 100644
--- a/ot/backend.py
+++ b/ot/backend.py
@@ -3,7 +3,7 @@
Multi-lib backend for POT
The goal is to write backend-agnostic code. Whether you're using Numpy, PyTorch,
-or Jax, POT code should work nonetheless.
+Jax, Cupy, or Tensorflow, POT code should work nonetheless.
To achieve that, POT provides backend classes which implements functions in their respective backend
imitating Numpy API. As a convention, we use nx instead of np to refer to the backend.
@@ -17,6 +17,68 @@ Examples
... nx = get_backend(a, b) # infer the backend from the arguments
... c = nx.dot(a, b) # now use the backend to do any calculation
... return c
+
+.. warning::
+ Tensorflow only works with the Numpy API. To activate it, please run the following:
+
+ .. code-block::
+
+ from tensorflow.python.ops.numpy_ops import np_config
+ np_config.enable_numpy_behavior()
+
+Performance
+--------
+
+- CPU: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
+- GPU: Tesla V100-SXM2-32GB
+- Date of the benchmark: December 8th, 2021
+- Commit of benchmark: PR #316, https://github.com/PythonOT/POT/pull/316
+
+.. raw:: html
+
+ <style>
+ #perftable {
+ width: 100%;
+ margin-bottom: 1em;
+ }
+
+ #perftable table{
+ border-collapse: collapse;
+ table-layout: fixed;
+ width: 100%;
+ }
+
+ #perftable th, #perftable td {
+ border: 1px solid #ddd;
+ padding: 8px;
+ font-size: smaller;
+ }
+ </style>
+
+ <div id="perftable">
+ <table>
+ <tr><th align="center" colspan="8">Sinkhorn Knopp - Averaged on 100 runs</th></tr>
+ <tr><th align="center">Bitsize</th><th align="center" colspan="7">32 bits</th></tr>
+ <tr><th align="center">Device</th><th align="center" colspan="3.0"">CPU</th><th align="center" colspan="4.0">GPU</tr>
+ <tr><th align="center">Sample size</th><th align="center">Numpy</th><th align="center">Pytorch</th><th align="center">Tensorflow</th><th align="center">Cupy</th><th align="center">Jax</th><th align="center">Pytorch</th><th align="center">Tensorflow</th></tr>
+ <tr><td align="center">50</td><td align="center">0.0008</td><td align="center">0.0022</td><td align="center">0.0151</td><td align="center">0.0095</td><td align="center">0.0193</td><td align="center">0.0051</td><td align="center">0.0293</td></tr>
+ <tr><td align="center">100</td><td align="center">0.0005</td><td align="center">0.0013</td><td align="center">0.0097</td><td align="center">0.0057</td><td align="center">0.0115</td><td align="center">0.0029</td><td align="center">0.0173</td></tr>
+ <tr><td align="center">500</td><td align="center">0.0009</td><td align="center">0.0016</td><td align="center">0.0110</td><td align="center">0.0058</td><td align="center">0.0115</td><td align="center">0.0029</td><td align="center">0.0166</td></tr>
+ <tr><td align="center">1000</td><td align="center">0.0021</td><td align="center">0.0021</td><td align="center">0.0145</td><td align="center">0.0056</td><td align="center">0.0118</td><td align="center">0.0029</td><td align="center">0.0168</td></tr>
+ <tr><td align="center">2000</td><td align="center">0.0069</td><td align="center">0.0043</td><td align="center">0.0278</td><td align="center">0.0059</td><td align="center">0.0118</td><td align="center">0.0030</td><td align="center">0.0165</td></tr>
+ <tr><td align="center">5000</td><td align="center">0.0707</td><td align="center">0.0314</td><td align="center">0.1395</td><td align="center">0.0074</td><td align="center">0.0125</td><td align="center">0.0035</td><td align="center">0.0198</td></tr>
+ <tr><td colspan="8">&nbsp;</td></tr>
+ <tr><th align="center">Bitsize</th><th align="center" colspan="7">64 bits</th></tr>
+ <tr><th align="center">Device</th><th align="center" colspan="3.0"">CPU</th><th align="center" colspan="4.0">GPU</tr>
+ <tr><th align="center">Sample size</th><th align="center">Numpy</th><th align="center">Pytorch</th><th align="center">Tensorflow</th><th align="center">Cupy</th><th align="center">Jax</th><th align="center">Pytorch</th><th align="center">Tensorflow</th></tr>
+ <tr><td align="center">50</td><td align="center">0.0008</td><td align="center">0.0020</td><td align="center">0.0154</td><td align="center">0.0093</td><td align="center">0.0191</td><td align="center">0.0051</td><td align="center">0.0328</td></tr>
+ <tr><td align="center">100</td><td align="center">0.0005</td><td align="center">0.0013</td><td align="center">0.0094</td><td align="center">0.0056</td><td align="center">0.0114</td><td align="center">0.0029</td><td align="center">0.0169</td></tr>
+ <tr><td align="center">500</td><td align="center">0.0013</td><td align="center">0.0017</td><td align="center">0.0120</td><td align="center">0.0059</td><td align="center">0.0116</td><td align="center">0.0029</td><td align="center">0.0168</td></tr>
+ <tr><td align="center">1000</td><td align="center">0.0034</td><td align="center">0.0027</td><td align="center">0.0177</td><td align="center">0.0058</td><td align="center">0.0118</td><td align="center">0.0029</td><td align="center">0.0167</td></tr>
+ <tr><td align="center">2000</td><td align="center">0.0146</td><td align="center">0.0075</td><td align="center">0.0436</td><td align="center">0.0059</td><td align="center">0.0120</td><td align="center">0.0029</td><td align="center">0.0165</td></tr>
+ <tr><td align="center">5000</td><td align="center">0.1467</td><td align="center">0.0568</td><td align="center">0.2468</td><td align="center">0.0077</td><td align="center">0.0146</td><td align="center">0.0045</td><td align="center">0.0204</td></tr>
+ </table>
+ </div>
"""
# Author: Remi Flamary <remi.flamary@polytechnique.edu>
@@ -27,6 +89,8 @@ Examples
import numpy as np
import scipy.special as scipy
from scipy.sparse import issparse, coo_matrix, csr_matrix
+import warnings
+import time
try:
import torch
@@ -39,11 +103,29 @@ try:
import jax
import jax.numpy as jnp
import jax.scipy.special as jscipy
+ from jax.lib import xla_bridge
jax_type = jax.numpy.ndarray
except ImportError:
jax = False
jax_type = float
+try:
+ import cupy as cp
+ import cupyx
+ cp_type = cp.ndarray
+except ImportError:
+ cp = False
+ cp_type = float
+
+try:
+ import tensorflow as tf
+ import tensorflow.experimental.numpy as tnp
+ tf_type = tf.Tensor
+except ImportError:
+ tf = False
+ tf_type = float
+
+
str_type_error = "All array should be from the same type/backend. Current types are : {}"
@@ -57,6 +139,12 @@ def get_backend_list():
if jax:
lst.append(JaxBackend())
+ if cp: # pragma: no cover
+ lst.append(CupyBackend())
+
+ if tf:
+ lst.append(TensorflowBackend())
+
return lst
@@ -78,6 +166,10 @@ def get_backend(*args):
return TorchBackend()
elif isinstance(args[0], jax_type):
return JaxBackend()
+ elif isinstance(args[0], cp_type): # pragma: no cover
+ return CupyBackend()
+ elif isinstance(args[0], tf_type):
+ return TensorflowBackend()
else:
raise ValueError("Unknown type of non implemented backend.")
@@ -94,7 +186,8 @@ def to_numpy(*args):
class Backend():
"""
Backend abstract class.
- Implementations: :py:class:`JaxBackend`, :py:class:`NumpyBackend`, :py:class:`TorchBackend`
+ Implementations: :py:class:`JaxBackend`, :py:class:`NumpyBackend`, :py:class:`TorchBackend`,
+ :py:class:`CupyBackend`, :py:class:`TensorflowBackend`
- The `__name__` class attribute refers to the name of the backend.
- The `__type__` class attribute refers to the data structure used by the backend.
@@ -665,6 +758,34 @@ class Backend():
"""
raise NotImplementedError()
+ def squeeze(self, a, axis=None):
+ r"""
+ Remove axes of length one from a.
+
+ This function follows the api from :any:`numpy.squeeze`.
+
+ See: https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html
+ """
+ raise NotImplementedError()
+
+ def bitsize(self, type_as):
+ r"""
+ Gives the number of bits used by the data type of the given tensor.
+ """
+ raise NotImplementedError()
+
+ def device_type(self, type_as):
+ r"""
+ Returns CPU or GPU depending on the device where the given tensor is located.
+ """
+ raise NotImplementedError()
+
+ def _bench(self, callable, *args, n_runs=1, warmup_runs=1):
+ r"""
+ Executes a benchmark of the given callable with the given arguments.
+ """
+ raise NotImplementedError()
+
class NumpyBackend(Backend):
"""
@@ -902,6 +1023,29 @@ class NumpyBackend(Backend):
# numpy has implicit type conversion so we automatically validate the test
pass
+ def squeeze(self, a, axis=None):
+ return np.squeeze(a, axis=axis)
+
+ def bitsize(self, type_as):
+ return type_as.itemsize * 8
+
+ def device_type(self, type_as):
+ return "CPU"
+
+ def _bench(self, callable, *args, n_runs=1, warmup_runs=1):
+ results = dict()
+ for type_as in self.__type_list__:
+ inputs = [self.from_numpy(arg, type_as=type_as) for arg in args]
+ for _ in range(warmup_runs):
+ callable(*inputs)
+ t0 = time.perf_counter()
+ for _ in range(n_runs):
+ callable(*inputs)
+ t1 = time.perf_counter()
+ key = ("Numpy", self.device_type(type_as), self.bitsize(type_as))
+ results[key] = (t1 - t0) / n_runs
+ return results
+
class JaxBackend(Backend):
"""
@@ -920,9 +1064,16 @@ class JaxBackend(Backend):
def __init__(self):
self.rng_ = jax.random.PRNGKey(42)
- for d in jax.devices():
- self.__type_list__ = [jax.device_put(jnp.array(1, dtype=jnp.float32), d),
- jax.device_put(jnp.array(1, dtype=jnp.float64), d)]
+ self.__type_list__ = []
+ # available_devices = jax.devices("cpu")
+ available_devices = []
+ if xla_bridge.get_backend().platform == "gpu":
+ available_devices += jax.devices("gpu")
+ for d in available_devices:
+ self.__type_list__ += [
+ jax.device_put(jnp.array(1, dtype=jnp.float32), d),
+ jax.device_put(jnp.array(1, dtype=jnp.float64), d)
+ ]
def to_numpy(self, a):
return np.array(a)
@@ -1162,6 +1313,32 @@ class JaxBackend(Backend):
assert a_dtype == b_dtype, "Dtype discrepancy"
assert a_device == b_device, f"Device discrepancy. First input is on {str(a_device)}, whereas second input is on {str(b_device)}"
+ def squeeze(self, a, axis=None):
+ return jnp.squeeze(a, axis=axis)
+
+ def bitsize(self, type_as):
+ return type_as.dtype.itemsize * 8
+
+ def device_type(self, type_as):
+ return self.dtype_device(type_as)[1].platform.upper()
+
+ def _bench(self, callable, *args, n_runs=1, warmup_runs=1):
+ results = dict()
+
+ for type_as in self.__type_list__:
+ inputs = [self.from_numpy(arg, type_as=type_as) for arg in args]
+ for _ in range(warmup_runs):
+ a = callable(*inputs)
+ a.block_until_ready()
+ t0 = time.perf_counter()
+ for _ in range(n_runs):
+ a = callable(*inputs)
+ a.block_until_ready()
+ t1 = time.perf_counter()
+ key = ("Jax", self.device_type(type_as), self.bitsize(type_as))
+ results[key] = (t1 - t0) / n_runs
+ return results
+
class TorchBackend(Backend):
"""
@@ -1203,7 +1380,7 @@ class TorchBackend(Backend):
@staticmethod
def backward(ctx, grad_output):
# the gradients are grad
- return (None, None) + ctx.grads
+ return (None, None) + tuple(g * grad_output for g in ctx.grads)
self.ValFunction = ValFunction
@@ -1500,3 +1677,690 @@ class TorchBackend(Backend):
assert a_dtype == b_dtype, "Dtype discrepancy"
assert a_device == b_device, f"Device discrepancy. First input is on {str(a_device)}, whereas second input is on {str(b_device)}"
+
+ def squeeze(self, a, axis=None):
+ if axis is None:
+ return torch.squeeze(a)
+ else:
+ return torch.squeeze(a, dim=axis)
+
+ def bitsize(self, type_as):
+ return torch.finfo(type_as.dtype).bits
+
+ def device_type(self, type_as):
+ return type_as.device.type.replace("cuda", "gpu").upper()
+
+ def _bench(self, callable, *args, n_runs=1, warmup_runs=1):
+ results = dict()
+ for type_as in self.__type_list__:
+ inputs = [self.from_numpy(arg, type_as=type_as) for arg in args]
+ for _ in range(warmup_runs):
+ callable(*inputs)
+ if self.device_type(type_as) == "GPU": # pragma: no cover
+ torch.cuda.synchronize()
+ start = torch.cuda.Event(enable_timing=True)
+ end = torch.cuda.Event(enable_timing=True)
+ start.record()
+ else:
+ start = time.perf_counter()
+ for _ in range(n_runs):
+ callable(*inputs)
+ if self.device_type(type_as) == "GPU": # pragma: no cover
+ end.record()
+ torch.cuda.synchronize()
+ duration = start.elapsed_time(end) / 1000.
+ else:
+ end = time.perf_counter()
+ duration = end - start
+ key = ("Pytorch", self.device_type(type_as), self.bitsize(type_as))
+ results[key] = duration / n_runs
+ if torch.cuda.is_available():
+ torch.cuda.empty_cache()
+ return results
+
+
+class CupyBackend(Backend): # pragma: no cover
+ """
+ CuPy implementation of the backend
+
+ - `__name__` is "cupy"
+ - `__type__` is cp.ndarray
+ """
+
+ __name__ = 'cupy'
+ __type__ = cp_type
+ __type_list__ = None
+
+ rng_ = None
+
+ def __init__(self):
+ self.rng_ = cp.random.RandomState()
+
+ self.__type_list__ = [
+ cp.array(1, dtype=cp.float32),
+ cp.array(1, dtype=cp.float64)
+ ]
+
+ def to_numpy(self, a):
+ return cp.asnumpy(a)
+
+ def from_numpy(self, a, type_as=None):
+ if type_as is None:
+ return cp.asarray(a)
+ else:
+ with cp.cuda.Device(type_as.device):
+ return cp.asarray(a, dtype=type_as.dtype)
+
+ def set_gradients(self, val, inputs, grads):
+ # No gradients for cupy
+ return val
+
+ def zeros(self, shape, type_as=None):
+ if isinstance(shape, (list, tuple)):
+ shape = tuple(int(i) for i in shape)
+ if type_as is None:
+ return cp.zeros(shape)
+ else:
+ with cp.cuda.Device(type_as.device):
+ return cp.zeros(shape, dtype=type_as.dtype)
+
+ def ones(self, shape, type_as=None):
+ if isinstance(shape, (list, tuple)):
+ shape = tuple(int(i) for i in shape)
+ if type_as is None:
+ return cp.ones(shape)
+ else:
+ with cp.cuda.Device(type_as.device):
+ return cp.ones(shape, dtype=type_as.dtype)
+
+ def arange(self, stop, start=0, step=1, type_as=None):
+ return cp.arange(start, stop, step)
+
+ def full(self, shape, fill_value, type_as=None):
+ if isinstance(shape, (list, tuple)):
+ shape = tuple(int(i) for i in shape)
+ if type_as is None:
+ return cp.full(shape, fill_value)
+ else:
+ with cp.cuda.Device(type_as.device):
+ return cp.full(shape, fill_value, dtype=type_as.dtype)
+
+ def eye(self, N, M=None, type_as=None):
+ if type_as is None:
+ return cp.eye(N, M)
+ else:
+ with cp.cuda.Device(type_as.device):
+ return cp.eye(N, M, dtype=type_as.dtype)
+
+ def sum(self, a, axis=None, keepdims=False):
+ return cp.sum(a, axis, keepdims=keepdims)
+
+ def cumsum(self, a, axis=None):
+ return cp.cumsum(a, axis)
+
+ def max(self, a, axis=None, keepdims=False):
+ return cp.max(a, axis, keepdims=keepdims)
+
+ def min(self, a, axis=None, keepdims=False):
+ return cp.min(a, axis, keepdims=keepdims)
+
+ def maximum(self, a, b):
+ return cp.maximum(a, b)
+
+ def minimum(self, a, b):
+ return cp.minimum(a, b)
+
+ def abs(self, a):
+ return cp.abs(a)
+
+ def exp(self, a):
+ return cp.exp(a)
+
+ def log(self, a):
+ return cp.log(a)
+
+ def sqrt(self, a):
+ return cp.sqrt(a)
+
+ def power(self, a, exponents):
+ return cp.power(a, exponents)
+
+ def dot(self, a, b):
+ return cp.dot(a, b)
+
+ def norm(self, a):
+ return cp.sqrt(cp.sum(cp.square(a)))
+
+ def any(self, a):
+ return cp.any(a)
+
+ def isnan(self, a):
+ return cp.isnan(a)
+
+ def isinf(self, a):
+ return cp.isinf(a)
+
+ def einsum(self, subscripts, *operands):
+ return cp.einsum(subscripts, *operands)
+
+ def sort(self, a, axis=-1):
+ return cp.sort(a, axis)
+
+ def argsort(self, a, axis=-1):
+ return cp.argsort(a, axis)
+
+ def searchsorted(self, a, v, side='left'):
+ if a.ndim == 1:
+ return cp.searchsorted(a, v, side)
+ else:
+ # this is a not very efficient way to make numpy
+ # searchsorted work on 2d arrays
+ ret = cp.empty(v.shape, dtype=int)
+ for i in range(a.shape[0]):
+ ret[i, :] = cp.searchsorted(a[i, :], v[i, :], side)
+ return ret
+
+ def flip(self, a, axis=None):
+ return cp.flip(a, axis)
+
+ def outer(self, a, b):
+ return cp.outer(a, b)
+
+ def clip(self, a, a_min, a_max):
+ return cp.clip(a, a_min, a_max)
+
+ def repeat(self, a, repeats, axis=None):
+ return cp.repeat(a, repeats, axis)
+
+ def take_along_axis(self, arr, indices, axis):
+ return cp.take_along_axis(arr, indices, axis)
+
+ def concatenate(self, arrays, axis=0):
+ return cp.concatenate(arrays, axis)
+
+ def zero_pad(self, a, pad_width):
+ return cp.pad(a, pad_width)
+
+ def argmax(self, a, axis=None):
+ return cp.argmax(a, axis=axis)
+
+ def mean(self, a, axis=None):
+ return cp.mean(a, axis=axis)
+
+ def std(self, a, axis=None):
+ return cp.std(a, axis=axis)
+
+ def linspace(self, start, stop, num):
+ return cp.linspace(start, stop, num)
+
+ def meshgrid(self, a, b):
+ return cp.meshgrid(a, b)
+
+ def diag(self, a, k=0):
+ return cp.diag(a, k)
+
+ def unique(self, a):
+ return cp.unique(a)
+
+ def logsumexp(self, a, axis=None):
+ # Taken from
+ # https://github.com/scipy/scipy/blob/v1.7.1/scipy/special/_logsumexp.py#L7-L127
+ a_max = cp.amax(a, axis=axis, keepdims=True)
+
+ if a_max.ndim > 0:
+ a_max[~cp.isfinite(a_max)] = 0
+ elif not cp.isfinite(a_max):
+ a_max = 0
+
+ tmp = cp.exp(a - a_max)
+ s = cp.sum(tmp, axis=axis)
+ out = cp.log(s)
+ a_max = cp.squeeze(a_max, axis=axis)
+ out += a_max
+ return out
+
+ def stack(self, arrays, axis=0):
+ return cp.stack(arrays, axis)
+
+ def reshape(self, a, shape):
+ return cp.reshape(a, shape)
+
+ def seed(self, seed=None):
+ if seed is not None:
+ self.rng_.seed(seed)
+
+ def rand(self, *size, type_as=None):
+ if type_as is None:
+ return self.rng_.rand(*size)
+ else:
+ with cp.cuda.Device(type_as.device):
+ return self.rng_.rand(*size, dtype=type_as.dtype)
+
+ def randn(self, *size, type_as=None):
+ if type_as is None:
+ return self.rng_.randn(*size)
+ else:
+ with cp.cuda.Device(type_as.device):
+ return self.rng_.randn(*size, dtype=type_as.dtype)
+
+ def coo_matrix(self, data, rows, cols, shape=None, type_as=None):
+ data = self.from_numpy(data)
+ rows = self.from_numpy(rows)
+ cols = self.from_numpy(cols)
+ if type_as is None:
+ return cupyx.scipy.sparse.coo_matrix(
+ (data, (rows, cols)), shape=shape
+ )
+ else:
+ with cp.cuda.Device(type_as.device):
+ return cupyx.scipy.sparse.coo_matrix(
+ (data, (rows, cols)), shape=shape, dtype=type_as.dtype
+ )
+
+ def issparse(self, a):
+ return cupyx.scipy.sparse.issparse(a)
+
+ def tocsr(self, a):
+ if self.issparse(a):
+ return a.tocsr()
+ else:
+ return cupyx.scipy.sparse.csr_matrix(a)
+
+ def eliminate_zeros(self, a, threshold=0.):
+ if threshold > 0:
+ if self.issparse(a):
+ a.data[self.abs(a.data) <= threshold] = 0
+ else:
+ a[self.abs(a) <= threshold] = 0
+ if self.issparse(a):
+ a.eliminate_zeros()
+ return a
+
+ def todense(self, a):
+ if self.issparse(a):
+ return a.toarray()
+ else:
+ return a
+
+ def where(self, condition, x, y):
+ return cp.where(condition, x, y)
+
+ def copy(self, a):
+ return a.copy()
+
+ def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
+ return cp.allclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)
+
+ def dtype_device(self, a):
+ return a.dtype, a.device
+
+ def assert_same_dtype_device(self, a, b):
+ a_dtype, a_device = self.dtype_device(a)
+ b_dtype, b_device = self.dtype_device(b)
+
+ # cupy has implicit type conversion so
+ # we automatically validate the test for type
+ assert a_device == b_device, f"Device discrepancy. First input is on {str(a_device)}, whereas second input is on {str(b_device)}"
+
+ def squeeze(self, a, axis=None):
+ return cp.squeeze(a, axis=axis)
+
+ def bitsize(self, type_as):
+ return type_as.itemsize * 8
+
+ def device_type(self, type_as):
+ return "GPU"
+
+ def _bench(self, callable, *args, n_runs=1, warmup_runs=1):
+ mempool = cp.get_default_memory_pool()
+ pinned_mempool = cp.get_default_pinned_memory_pool()
+
+ results = dict()
+ for type_as in self.__type_list__:
+ inputs = [self.from_numpy(arg, type_as=type_as) for arg in args]
+ start_gpu = cp.cuda.Event()
+ end_gpu = cp.cuda.Event()
+ for _ in range(warmup_runs):
+ callable(*inputs)
+ start_gpu.synchronize()
+ start_gpu.record()
+ for _ in range(n_runs):
+ callable(*inputs)
+ end_gpu.record()
+ end_gpu.synchronize()
+ key = ("Cupy", self.device_type(type_as), self.bitsize(type_as))
+ t_gpu = cp.cuda.get_elapsed_time(start_gpu, end_gpu) / 1000.
+ results[key] = t_gpu / n_runs
+ mempool.free_all_blocks()
+ pinned_mempool.free_all_blocks()
+ return results
+
+
+class TensorflowBackend(Backend):
+
+ __name__ = "tf"
+ __type__ = tf_type
+ __type_list__ = None
+
+ rng_ = None
+
+ def __init__(self):
+ self.seed(None)
+
+ self.__type_list__ = [
+ tf.convert_to_tensor([1], dtype=tf.float32),
+ tf.convert_to_tensor([1], dtype=tf.float64)
+ ]
+
+ tmp = self.randn(15, 10)
+ try:
+ tmp.reshape((150, 1))
+ except AttributeError:
+ warnings.warn(
+ "To use TensorflowBackend, you need to activate the tensorflow "
+ "numpy API. You can activate it by running: \n"
+ "from tensorflow.python.ops.numpy_ops import np_config\n"
+ "np_config.enable_numpy_behavior()"
+ )
+
+ def to_numpy(self, a):
+ return a.numpy()
+
+ def from_numpy(self, a, type_as=None):
+ if not isinstance(a, self.__type__):
+ if type_as is None:
+ return tf.convert_to_tensor(a)
+ else:
+ return tf.convert_to_tensor(a, dtype=type_as.dtype)
+ else:
+ if type_as is None:
+ return a
+ else:
+ return tf.cast(a, dtype=type_as.dtype)
+
+ def set_gradients(self, val, inputs, grads):
+ @tf.custom_gradient
+ def tmp(input):
+ def grad(upstream):
+ return grads
+ return val, grad
+ return tmp(inputs)
+
+ def zeros(self, shape, type_as=None):
+ if type_as is None:
+ return tnp.zeros(shape)
+ else:
+ return tnp.zeros(shape, dtype=type_as.dtype)
+
+ def ones(self, shape, type_as=None):
+ if type_as is None:
+ return tnp.ones(shape)
+ else:
+ return tnp.ones(shape, dtype=type_as.dtype)
+
+ def arange(self, stop, start=0, step=1, type_as=None):
+ return tnp.arange(start, stop, step)
+
+ def full(self, shape, fill_value, type_as=None):
+ if type_as is None:
+ return tnp.full(shape, fill_value)
+ else:
+ return tnp.full(shape, fill_value, dtype=type_as.dtype)
+
+ def eye(self, N, M=None, type_as=None):
+ if type_as is None:
+ return tnp.eye(N, M)
+ else:
+ return tnp.eye(N, M, dtype=type_as.dtype)
+
+ def sum(self, a, axis=None, keepdims=False):
+ return tnp.sum(a, axis, keepdims=keepdims)
+
+ def cumsum(self, a, axis=None):
+ return tnp.cumsum(a, axis)
+
+ def max(self, a, axis=None, keepdims=False):
+ return tnp.max(a, axis, keepdims=keepdims)
+
+ def min(self, a, axis=None, keepdims=False):
+ return tnp.min(a, axis, keepdims=keepdims)
+
+ def maximum(self, a, b):
+ return tnp.maximum(a, b)
+
+ def minimum(self, a, b):
+ return tnp.minimum(a, b)
+
+ def dot(self, a, b):
+ if len(b.shape) == 1:
+ if len(a.shape) == 1:
+ # inner product
+ return tf.reduce_sum(tf.multiply(a, b))
+ else:
+ # matrix vector
+ return tf.linalg.matvec(a, b)
+ else:
+ if len(a.shape) == 1:
+ return tf.linalg.matvec(b.T, a.T).T
+ else:
+ return tf.matmul(a, b)
+
+ def abs(self, a):
+ return tnp.abs(a)
+
+ def exp(self, a):
+ return tnp.exp(a)
+
+ def log(self, a):
+ return tnp.log(a)
+
+ def sqrt(self, a):
+ return tnp.sqrt(a)
+
+ def power(self, a, exponents):
+ return tnp.power(a, exponents)
+
+ def norm(self, a):
+ return tf.math.reduce_euclidean_norm(a)
+
+ def any(self, a):
+ return tnp.any(a)
+
+ def isnan(self, a):
+ return tnp.isnan(a)
+
+ def isinf(self, a):
+ return tnp.isinf(a)
+
+ def einsum(self, subscripts, *operands):
+ return tnp.einsum(subscripts, *operands)
+
+ def sort(self, a, axis=-1):
+ return tnp.sort(a, axis)
+
+ def argsort(self, a, axis=-1):
+ return tnp.argsort(a, axis)
+
+ def searchsorted(self, a, v, side='left'):
+ return tf.searchsorted(a, v, side=side)
+
+ def flip(self, a, axis=None):
+ return tnp.flip(a, axis)
+
+ def outer(self, a, b):
+ return tnp.outer(a, b)
+
+ def clip(self, a, a_min, a_max):
+ return tnp.clip(a, a_min, a_max)
+
+ def repeat(self, a, repeats, axis=None):
+ return tnp.repeat(a, repeats, axis)
+
+ def take_along_axis(self, arr, indices, axis):
+ return tnp.take_along_axis(arr, indices, axis)
+
+ def concatenate(self, arrays, axis=0):
+ return tnp.concatenate(arrays, axis)
+
+ def zero_pad(self, a, pad_width):
+ return tnp.pad(a, pad_width, mode="constant")
+
+ def argmax(self, a, axis=None):
+ return tnp.argmax(a, axis=axis)
+
+ def mean(self, a, axis=None):
+ return tnp.mean(a, axis=axis)
+
+ def std(self, a, axis=None):
+ return tnp.std(a, axis=axis)
+
+ def linspace(self, start, stop, num):
+ return tnp.linspace(start, stop, num)
+
+ def meshgrid(self, a, b):
+ return tnp.meshgrid(a, b)
+
+ def diag(self, a, k=0):
+ return tnp.diag(a, k)
+
+ def unique(self, a):
+ return tf.sort(tf.unique(tf.reshape(a, [-1]))[0])
+
+ def logsumexp(self, a, axis=None):
+ return tf.math.reduce_logsumexp(a, axis=axis)
+
+ def stack(self, arrays, axis=0):
+ return tnp.stack(arrays, axis)
+
+ def reshape(self, a, shape):
+ return tnp.reshape(a, shape)
+
+ def seed(self, seed=None):
+ if isinstance(seed, int):
+ self.rng_ = tf.random.Generator.from_seed(seed)
+ elif isinstance(seed, tf.random.Generator):
+ self.rng_ = seed
+ elif seed is None:
+ self.rng_ = tf.random.Generator.from_non_deterministic_state()
+ else:
+ raise ValueError("Non compatible seed : {}".format(seed))
+
+ def rand(self, *size, type_as=None):
+ if type_as is None:
+ return self.rng_.uniform(size, minval=0., maxval=1.)
+ else:
+ return self.rng_.uniform(
+ size, minval=0., maxval=1., dtype=type_as.dtype
+ )
+
+ def randn(self, *size, type_as=None):
+ if type_as is None:
+ return self.rng_.normal(size)
+ else:
+ return self.rng_.normal(size, dtype=type_as.dtype)
+
+ def _convert_to_index_for_coo(self, tensor):
+ if isinstance(tensor, self.__type__):
+ return int(self.max(tensor)) + 1
+ else:
+ return int(np.max(tensor)) + 1
+
+ def coo_matrix(self, data, rows, cols, shape=None, type_as=None):
+ if shape is None:
+ shape = (
+ self._convert_to_index_for_coo(rows),
+ self._convert_to_index_for_coo(cols)
+ )
+ if type_as is not None:
+ data = self.from_numpy(data, type_as=type_as)
+
+ sparse_tensor = tf.sparse.SparseTensor(
+ indices=tnp.stack([rows, cols]).T,
+ values=data,
+ dense_shape=shape
+ )
+ # if type_as is not None:
+ # sparse_tensor = self.from_numpy(sparse_tensor, type_as=type_as)
+ # SparseTensor are not subscriptable so we use dense tensors
+ return self.todense(sparse_tensor)
+
+ def issparse(self, a):
+ return isinstance(a, tf.sparse.SparseTensor)
+
+ def tocsr(self, a):
+ return a
+
+ def eliminate_zeros(self, a, threshold=0.):
+ if self.issparse(a):
+ values = a.values
+ if threshold > 0:
+ mask = self.abs(values) <= threshold
+ else:
+ mask = values == 0
+ return tf.sparse.retain(a, ~mask)
+ else:
+ if threshold > 0:
+ a = tnp.where(self.abs(a) > threshold, a, 0.)
+ return a
+
+ def todense(self, a):
+ if self.issparse(a):
+ return tf.sparse.to_dense(tf.sparse.reorder(a))
+ else:
+ return a
+
+ def where(self, condition, x, y):
+ return tnp.where(condition, x, y)
+
+ def copy(self, a):
+ return tf.identity(a)
+
+ def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
+ return tnp.allclose(
+ a, b, rtol=rtol, atol=atol, equal_nan=equal_nan
+ )
+
+ def dtype_device(self, a):
+ return a.dtype, a.device.split("device:")[1]
+
+ def assert_same_dtype_device(self, a, b):
+ a_dtype, a_device = self.dtype_device(a)
+ b_dtype, b_device = self.dtype_device(b)
+
+ assert a_dtype == b_dtype, "Dtype discrepancy"
+ assert a_device == b_device, f"Device discrepancy. First input is on {str(a_device)}, whereas second input is on {str(b_device)}"
+
+ def squeeze(self, a, axis=None):
+ return tnp.squeeze(a, axis=axis)
+
+ def bitsize(self, type_as):
+ return type_as.dtype.size * 8
+
+ def device_type(self, type_as):
+ return self.dtype_device(type_as)[1].split(":")[0]
+
+ def _bench(self, callable, *args, n_runs=1, warmup_runs=1):
+ results = dict()
+ device_contexts = [tf.device("/CPU:0")]
+ if len(tf.config.list_physical_devices('GPU')) > 0: # pragma: no cover
+ device_contexts.append(tf.device("/GPU:0"))
+
+ for device_context in device_contexts:
+ with device_context:
+ for type_as in self.__type_list__:
+ inputs = [self.from_numpy(arg, type_as=type_as) for arg in args]
+ for _ in range(warmup_runs):
+ callable(*inputs)
+ t0 = time.perf_counter()
+ for _ in range(n_runs):
+ res = callable(*inputs)
+ _ = res.numpy()
+ t1 = time.perf_counter()
+ key = (
+ "Tensorflow",
+ self.device_type(inputs[0]),
+ self.bitsize(type_as)
+ )
+ results[key] = (t1 - t0) / n_runs
+
+ return results
diff --git a/ot/bregman.py b/ot/bregman.py
index cce52e2..fc20175 100644
--- a/ot/bregman.py
+++ b/ot/bregman.py
@@ -830,9 +830,9 @@ def greenkhorn(a, b, M, reg, numItermax=10000, stopThr=1e-9, verbose=False,
a, b, M = list_to_array(a, b, M)
nx = get_backend(M, a, b)
- if nx.__name__ == "jax":
- raise TypeError("JAX arrays have been received. Greenkhorn is not "
- "compatible with JAX")
+ if nx.__name__ in ("jax", "tf"):
+ raise TypeError("JAX or TF arrays have been received. Greenkhorn is not "
+ "compatible with neither JAX nor TF")
if len(a) == 0:
a = nx.ones((M.shape[0],), type_as=M) / M.shape[0]
@@ -865,20 +865,20 @@ def greenkhorn(a, b, M, reg, numItermax=10000, stopThr=1e-9, verbose=False,
if m_viol_1 > m_viol_2:
old_u = u[i_1]
- new_u = a[i_1] / (K[i_1, :].dot(v))
+ new_u = a[i_1] / nx.dot(K[i_1, :], v)
G[i_1, :] = new_u * K[i_1, :] * v
- viol[i_1] = new_u * K[i_1, :].dot(v) - a[i_1]
+ viol[i_1] = nx.dot(new_u * K[i_1, :], v) - a[i_1]
viol_2 += (K[i_1, :].T * (new_u - old_u) * v)
u[i_1] = new_u
else:
old_v = v[i_2]
- new_v = b[i_2] / (K[:, i_2].T.dot(u))
+ new_v = b[i_2] / nx.dot(K[:, i_2].T, u)
G[:, i_2] = u * K[:, i_2] * new_v
# aviol = (G@one_m - a)
# aviol_2 = (G.T@one_n - b)
viol += (-old_v + new_v) * K[:, i_2] * u
- viol_2[i_2] = new_v * K[:, i_2].dot(u) - b[i_2]
+ viol_2[i_2] = new_v * nx.dot(K[:, i_2], u) - b[i_2]
v[i_2] = new_v
if stopThr_val <= stopThr:
@@ -1550,9 +1550,11 @@ def _barycenter_sinkhorn_log(A, M, reg, weights=None, numItermax=1000,
nx = get_backend(A, M)
- if nx.__name__ == "jax":
- raise NotImplementedError("Log-domain functions are not yet implemented"
- " for Jax. Use numpy or torch arrays instead.")
+ if nx.__name__ in ("jax", "tf"):
+ raise NotImplementedError(
+ "Log-domain functions are not yet implemented"
+ " for Jax and tf. Use numpy or torch arrays instead."
+ )
if weights is None:
weights = nx.ones(n_hists, type_as=A) / n_hists
@@ -1886,9 +1888,11 @@ def _barycenter_debiased_log(A, M, reg, weights=None, numItermax=1000,
dim, n_hists = A.shape
nx = get_backend(A, M)
- if nx.__name__ == "jax":
- raise NotImplementedError("Log-domain functions are not yet implemented"
- " for Jax. Use numpy or torch arrays instead.")
+ if nx.__name__ in ("jax", "tf"):
+ raise NotImplementedError(
+ "Log-domain functions are not yet implemented"
+ " for Jax and TF. Use numpy or torch arrays instead."
+ )
if weights is None:
weights = nx.ones(n_hists, type_as=A) / n_hists
@@ -2043,7 +2047,7 @@ def _convolutional_barycenter2d(A, reg, weights=None, numItermax=10000,
log = {'err': []}
bar = nx.ones(A.shape[1:], type_as=A)
- bar /= bar.sum()
+ bar /= nx.sum(bar)
U = nx.ones(A.shape, type_as=A)
V = nx.ones(A.shape, type_as=A)
err = 1
@@ -2069,9 +2073,11 @@ def _convolutional_barycenter2d(A, reg, weights=None, numItermax=10000,
KV = convol_imgs(V)
U = A / KV
KU = convol_imgs(U)
- bar = nx.exp((weights[:, None, None] * nx.log(KU + stabThr)).sum(axis=0))
+ bar = nx.exp(
+ nx.sum(weights[:, None, None] * nx.log(KU + stabThr), axis=0)
+ )
if ii % 10 == 9:
- err = (V * KU).std(axis=0).sum()
+ err = nx.sum(nx.std(V * KU, axis=0))
# log and verbose print
if log:
log['err'].append(err)
@@ -2106,9 +2112,11 @@ def _convolutional_barycenter2d_log(A, reg, weights=None, numItermax=10000,
A = list_to_array(A)
nx = get_backend(A)
- if nx.__name__ == "jax":
- raise NotImplementedError("Log-domain functions are not yet implemented"
- " for Jax. Use numpy or torch arrays instead.")
+ if nx.__name__ in ("jax", "tf"):
+ raise NotImplementedError(
+ "Log-domain functions are not yet implemented"
+ " for Jax and TF. Use numpy or torch arrays instead."
+ )
n_hists, width, height = A.shape
@@ -2298,13 +2306,15 @@ def _convolutional_barycenter2d_debiased(A, reg, weights=None, numItermax=10000,
KV = convol_imgs(V)
U = A / KV
KU = convol_imgs(U)
- bar = c * nx.exp((weights[:, None, None] * nx.log(KU + stabThr)).sum(axis=0))
+ bar = c * nx.exp(
+ nx.sum(weights[:, None, None] * nx.log(KU + stabThr), axis=0)
+ )
for _ in range(10):
- c = (c * bar / convol_imgs(c[None]).squeeze()) ** 0.5
+ c = (c * bar / nx.squeeze(convol_imgs(c[None]))) ** 0.5
if ii % 10 == 9:
- err = (V * KU).std(axis=0).sum()
+ err = nx.sum(nx.std(V * KU, axis=0))
# log and verbose print
if log:
log['err'].append(err)
@@ -2340,9 +2350,11 @@ def _convolutional_barycenter2d_debiased_log(A, reg, weights=None, numItermax=10
A = list_to_array(A)
n_hists, width, height = A.shape
nx = get_backend(A)
- if nx.__name__ == "jax":
- raise NotImplementedError("Log-domain functions are not yet implemented"
- " for Jax. Use numpy or torch arrays instead.")
+ if nx.__name__ in ("jax", "tf"):
+ raise NotImplementedError(
+ "Log-domain functions are not yet implemented"
+ " for Jax and TF. Use numpy or torch arrays instead."
+ )
if weights is None:
weights = nx.ones((n_hists,), type_as=A) / n_hists
else:
@@ -2382,7 +2394,7 @@ def _convolutional_barycenter2d_debiased_log(A, reg, weights=None, numItermax=10
c = 0.5 * (c + log_bar - convol_img(c))
if ii % 10 == 9:
- err = nx.exp(G + log_KU).std(axis=0).sum()
+ err = nx.sum(nx.std(nx.exp(G + log_KU), axis=0))
# log and verbose print
if log:
log['err'].append(err)
@@ -3312,9 +3324,9 @@ def screenkhorn(a, b, M, reg, ns_budget=None, nt_budget=None, uniform=False,
a, b, M = list_to_array(a, b, M)
nx = get_backend(M, a, b)
- if nx.__name__ == "jax":
- raise TypeError("JAX arrays have been received but screenkhorn is not "
- "compatible with JAX.")
+ if nx.__name__ in ("jax", "tf"):
+ raise TypeError("JAX or TF arrays have been received but screenkhorn is not "
+ "compatible with neither JAX nor TF.")
ns, nt = M.shape
@@ -3328,7 +3340,7 @@ def screenkhorn(a, b, M, reg, ns_budget=None, nt_budget=None, uniform=False,
K = nx.exp(-M / reg)
def projection(u, epsilon):
- u[u <= epsilon] = epsilon
+ u = nx.maximum(u, epsilon)
return u
# ----------------------------------------------------------------------------------------------------------------#
diff --git a/ot/da.py b/ot/da.py
index 4fd97df..841f31a 100644
--- a/ot/da.py
+++ b/ot/da.py
@@ -906,7 +906,7 @@ def emd_laplace(a, b, xs, xt, M, sim='knn', sim_param=None, reg='pos', eta=1, al
def distribution_estimation_uniform(X):
- """estimates a uniform distribution from an array of samples :math:`\mathbf{X}`
+ r"""estimates a uniform distribution from an array of samples :math:`\mathbf{X}`
Parameters
----------
@@ -950,7 +950,7 @@ class BaseTransport(BaseEstimator):
"""
def fit(self, Xs=None, ys=None, Xt=None, yt=None):
- """Build a coupling matrix from source and target sets of samples
+ r"""Build a coupling matrix from source and target sets of samples
:math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})`
Parameters
@@ -1010,7 +1010,7 @@ class BaseTransport(BaseEstimator):
return self
def fit_transform(self, Xs=None, ys=None, Xt=None, yt=None):
- """Build a coupling matrix from source and target sets of samples
+ r"""Build a coupling matrix from source and target sets of samples
:math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})`
and transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}`
@@ -1038,7 +1038,7 @@ class BaseTransport(BaseEstimator):
return self.fit(Xs, ys, Xt, yt).transform(Xs, ys, Xt, yt)
def transform(self, Xs=None, ys=None, Xt=None, yt=None, batch_size=128):
- """Transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}`
+ r"""Transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}`
Parameters
----------
@@ -1105,7 +1105,7 @@ class BaseTransport(BaseEstimator):
return transp_Xs
def transform_labels(self, ys=None):
- """Propagate source labels :math:`\mathbf{y_s}` to obtain estimated target labels as in
+ r"""Propagate source labels :math:`\mathbf{y_s}` to obtain estimated target labels as in
:ref:`[27] <references-basetransport-transform-labels>`.
Parameters
@@ -1152,7 +1152,7 @@ class BaseTransport(BaseEstimator):
def inverse_transform(self, Xs=None, ys=None, Xt=None, yt=None,
batch_size=128):
- """Transports target samples :math:`\mathbf{X_t}` onto source samples :math:`\mathbf{X_s}`
+ r"""Transports target samples :math:`\mathbf{X_t}` onto source samples :math:`\mathbf{X_s}`
Parameters
----------
@@ -1218,7 +1218,7 @@ class BaseTransport(BaseEstimator):
return transp_Xt
def inverse_transform_labels(self, yt=None):
- """Propagate target labels :math:`\mathbf{y_t}` to obtain estimated source labels
+ r"""Propagate target labels :math:`\mathbf{y_t}` to obtain estimated source labels
:math:`\mathbf{y_s}`
Parameters
@@ -1307,7 +1307,7 @@ class LinearTransport(BaseTransport):
self.distribution_estimation = distribution_estimation
def fit(self, Xs=None, ys=None, Xt=None, yt=None):
- """Build a coupling matrix from source and target sets of samples
+ r"""Build a coupling matrix from source and target sets of samples
:math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})`
Parameters
@@ -1354,7 +1354,7 @@ class LinearTransport(BaseTransport):
return self
def transform(self, Xs=None, ys=None, Xt=None, yt=None, batch_size=128):
- """Transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}`
+ r"""Transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}`
Parameters
----------
@@ -1387,7 +1387,7 @@ class LinearTransport(BaseTransport):
def inverse_transform(self, Xs=None, ys=None, Xt=None, yt=None,
batch_size=128):
- """Transports target samples :math:`\mathbf{X_t}` onto source samples :math:`\mathbf{X_s}`
+ r"""Transports target samples :math:`\mathbf{X_t}` onto source samples :math:`\mathbf{X_s}`
Parameters
----------
@@ -1493,7 +1493,7 @@ class SinkhornTransport(BaseTransport):
self.out_of_sample_map = out_of_sample_map
def fit(self, Xs=None, ys=None, Xt=None, yt=None):
- """Build a coupling matrix from source and target sets of samples
+ r"""Build a coupling matrix from source and target sets of samples
:math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})`
Parameters
@@ -1592,7 +1592,7 @@ class EMDTransport(BaseTransport):
self.max_iter = max_iter
def fit(self, Xs, ys=None, Xt=None, yt=None):
- """Build a coupling matrix from source and target sets of samples
+ r"""Build a coupling matrix from source and target sets of samples
:math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})`
Parameters
@@ -1711,7 +1711,7 @@ class SinkhornLpl1Transport(BaseTransport):
self.limit_max = limit_max
def fit(self, Xs, ys=None, Xt=None, yt=None):
- """Build a coupling matrix from source and target sets of samples
+ r"""Build a coupling matrix from source and target sets of samples
:math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})`
Parameters
@@ -1839,7 +1839,7 @@ class EMDLaplaceTransport(BaseTransport):
self.out_of_sample_map = out_of_sample_map
def fit(self, Xs, ys=None, Xt=None, yt=None):
- """Build a coupling matrix from source and target sets of samples
+ r"""Build a coupling matrix from source and target sets of samples
:math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})`
Parameters
@@ -1962,7 +1962,7 @@ class SinkhornL1l2Transport(BaseTransport):
self.limit_max = limit_max
def fit(self, Xs, ys=None, Xt=None, yt=None):
- """Build a coupling matrix from source and target sets of samples
+ r"""Build a coupling matrix from source and target sets of samples
:math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})`
Parameters
@@ -2088,7 +2088,7 @@ class MappingTransport(BaseEstimator):
self.verbose2 = verbose2
def fit(self, Xs=None, ys=None, Xt=None, yt=None):
- """Builds an optimal coupling and estimates the associated mapping
+ r"""Builds an optimal coupling and estimates the associated mapping
from source and target sets of samples
:math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})`
@@ -2146,7 +2146,7 @@ class MappingTransport(BaseEstimator):
return self
def transform(self, Xs):
- """Transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}`
+ r"""Transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}`
Parameters
----------
@@ -2261,7 +2261,7 @@ class UnbalancedSinkhornTransport(BaseTransport):
self.limit_max = limit_max
def fit(self, Xs, ys=None, Xt=None, yt=None):
- """Build a coupling matrix from source and target sets of samples
+ r"""Build a coupling matrix from source and target sets of samples
:math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})`
Parameters
@@ -2373,7 +2373,7 @@ class JCPOTTransport(BaseTransport):
self.out_of_sample_map = out_of_sample_map
def fit(self, Xs, ys=None, Xt=None, yt=None):
- """Building coupling matrices from a list of source and target sets of samples
+ r"""Building coupling matrices from a list of source and target sets of samples
:math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})`
Parameters
@@ -2419,7 +2419,7 @@ class JCPOTTransport(BaseTransport):
return self
def transform(self, Xs=None, ys=None, Xt=None, yt=None, batch_size=128):
- """Transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}`
+ r"""Transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}`
Parameters
----------
@@ -2491,7 +2491,7 @@ class JCPOTTransport(BaseTransport):
return transp_Xs
def transform_labels(self, ys=None):
- """Propagate source labels :math:`\mathbf{y_s}` to obtain target labels as in
+ r"""Propagate source labels :math:`\mathbf{y_s}` to obtain target labels as in
:ref:`[27] <references-jcpottransport-transform-labels>`
Parameters
@@ -2542,7 +2542,7 @@ class JCPOTTransport(BaseTransport):
return yt.T
def inverse_transform_labels(self, yt=None):
- """Propagate target labels :math:`\mathbf{y_t}` to obtain estimated source labels
+ r"""Propagate target labels :math:`\mathbf{y_t}` to obtain estimated source labels
:math:`\mathbf{y_s}`
Parameters
diff --git a/ot/datasets.py b/ot/datasets.py
index ad6390c..a839074 100644
--- a/ot/datasets.py
+++ b/ot/datasets.py
@@ -41,7 +41,7 @@ def get_1D_gauss(n, m, sigma):
def make_2D_samples_gauss(n, m, sigma, random_state=None):
- """Return `n` samples drawn from 2D gaussian :math:`\mathcal{N}(m, \sigma)`
+ r"""Return `n` samples drawn from 2D gaussian :math:`\mathcal{N}(m, \sigma)`
Parameters
----------
diff --git a/ot/dr.py b/ot/dr.py
index c2f51f8..1671ca0 100644
--- a/ot/dr.py
+++ b/ot/dr.py
@@ -16,6 +16,7 @@ Dimension reduction with OT
from scipy import linalg
import autograd.numpy as np
+from pymanopt.function import Autograd
from pymanopt.manifolds import Stiefel
from pymanopt import Problem
from pymanopt.solvers import SteepestDescent, TrustRegions
@@ -181,6 +182,7 @@ def wda(X, y, p=2, reg=1, k=10, solver=None, maxiter=100, verbose=0, P0=None, no
else:
regmean = np.ones((len(xc), len(xc)))
+ @Autograd
def cost(P):
# wda loss
loss_b = 0
diff --git a/ot/gromov.py b/ot/gromov.py
index ea667e4..6544260 100644
--- a/ot/gromov.py
+++ b/ot/gromov.py
@@ -822,8 +822,12 @@ def GW_distance_estimation(C1, C2, p, q, loss_fun, T,
index_k = np.zeros((nb_samples_p, nb_samples_q), dtype=int)
index_l = np.zeros((nb_samples_p, nb_samples_q), dtype=int)
- index_i = generator.choice(len_p, size=nb_samples_p, p=p, replace=False)
- index_j = generator.choice(len_p, size=nb_samples_p, p=p, replace=False)
+ index_i = generator.choice(
+ len_p, size=nb_samples_p, p=nx.to_numpy(p), replace=False
+ )
+ index_j = generator.choice(
+ len_p, size=nb_samples_p, p=nx.to_numpy(p), replace=False
+ )
for i in range(nb_samples_p):
if nx.issparse(T):
@@ -836,13 +840,13 @@ def GW_distance_estimation(C1, C2, p, q, loss_fun, T,
index_k[i] = generator.choice(
len_q,
size=nb_samples_q,
- p=T_indexi / nx.sum(T_indexi),
+ p=nx.to_numpy(T_indexi / nx.sum(T_indexi)),
replace=True
)
index_l[i] = generator.choice(
len_q,
size=nb_samples_q,
- p=T_indexj / nx.sum(T_indexj),
+ p=nx.to_numpy(T_indexj / nx.sum(T_indexj)),
replace=True
)
@@ -934,15 +938,17 @@ def pointwise_gromov_wasserstein(C1, C2, p, q, loss_fun,
index = np.zeros(2, dtype=int)
# Initialize with default marginal
- index[0] = generator.choice(len_p, size=1, p=p)
- index[1] = generator.choice(len_q, size=1, p=q)
+ index[0] = generator.choice(len_p, size=1, p=nx.to_numpy(p))
+ index[1] = generator.choice(len_q, size=1, p=nx.to_numpy(q))
T = nx.tocsr(emd_1d(C1[index[0]], C2[index[1]], a=p, b=q, dense=False))
best_gw_dist_estimated = np.inf
for cpt in range(max_iter):
- index[0] = generator.choice(len_p, size=1, p=p)
+ index[0] = generator.choice(len_p, size=1, p=nx.to_numpy(p))
T_index0 = nx.reshape(nx.todense(T[index[0], :]), (-1,))
- index[1] = generator.choice(len_q, size=1, p=T_index0 / T_index0.sum())
+ index[1] = generator.choice(
+ len_q, size=1, p=nx.to_numpy(T_index0 / nx.sum(T_index0))
+ )
if alpha == 1:
T = nx.tocsr(
@@ -1071,13 +1077,16 @@ def sampled_gromov_wasserstein(C1, C2, p, q, loss_fun,
C_are_symmetric = nx.allclose(C1, C1.T, rtol=1e-10, atol=1e-10) and nx.allclose(C2, C2.T, rtol=1e-10, atol=1e-10)
for cpt in range(max_iter):
- index0 = generator.choice(len_p, size=nb_samples_grad_p, p=p, replace=False)
+ index0 = generator.choice(
+ len_p, size=nb_samples_grad_p, p=nx.to_numpy(p), replace=False
+ )
Lik = 0
for i, index0_i in enumerate(index0):
- index1 = generator.choice(len_q,
- size=nb_samples_grad_q,
- p=T[index0_i, :] / nx.sum(T[index0_i, :]),
- replace=False)
+ index1 = generator.choice(
+ len_q, size=nb_samples_grad_q,
+ p=nx.to_numpy(T[index0_i, :] / nx.sum(T[index0_i, :])),
+ replace=False
+ )
# If the matrices C are not symmetric, the gradient has 2 terms, thus the term is chosen randomly.
if (not C_are_symmetric) and generator.rand(1) > 0.5:
Lik += nx.mean(loss_fun(
@@ -1359,6 +1368,8 @@ def entropic_gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun, epsilon,
-------
C : array-like, shape (`N`, `N`)
Similarity matrix in the barycenter space (permutated arbitrarily)
+ log : dict
+ Log dictionary of error during iterations. Return only if `log=True` in parameters.
References
----------
@@ -1392,7 +1403,7 @@ def entropic_gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun, epsilon,
Cprev = C
T = [entropic_gromov_wasserstein(Cs[s], C, ps[s], p, loss_fun, epsilon,
- max_iter, 1e-4, verbose, log) for s in range(S)]
+ max_iter, 1e-4, verbose, log=False) for s in range(S)]
if loss_fun == 'square_loss':
C = update_square_loss(p, lambdas, T, Cs)
@@ -1405,9 +1416,6 @@ def entropic_gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun, epsilon,
err = nx.norm(C - Cprev)
error.append(err)
- if log:
- log['err'].append(err)
-
if verbose:
if cpt % 200 == 0:
print('{:5s}|{:12s}'.format(
@@ -1416,7 +1424,10 @@ def entropic_gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun, epsilon,
cpt += 1
- return C
+ if log:
+ return C, {"err": error}
+ else:
+ return C
def gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun,
@@ -1470,6 +1481,8 @@ def gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun,
-------
C : array-like, shape (`N`, `N`)
Similarity matrix in the barycenter space (permutated arbitrarily)
+ log : dict
+ Log dictionary of error during iterations. Return only if `log=True` in parameters.
References
----------
@@ -1504,7 +1517,7 @@ def gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun,
Cprev = C
T = [gromov_wasserstein(Cs[s], C, ps[s], p, loss_fun,
- numItermax=max_iter, stopThr=1e-5, verbose=verbose, log=log) for s in range(S)]
+ numItermax=max_iter, stopThr=1e-5, verbose=verbose, log=False) for s in range(S)]
if loss_fun == 'square_loss':
C = update_square_loss(p, lambdas, T, Cs)
@@ -1517,9 +1530,6 @@ def gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun,
err = nx.norm(C - Cprev)
error.append(err)
- if log:
- log['err'].append(err)
-
if verbose:
if cpt % 200 == 0:
print('{:5s}|{:12s}'.format(
@@ -1528,7 +1538,10 @@ def gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun,
cpt += 1
- return C
+ if log:
+ return C, {"err": error}
+ else:
+ return C
def fgw_barycenters(N, Ys, Cs, ps, lambdas, alpha, fixed_structure=False, fixed_features=False,
diff --git a/ot/lp/solver_1d.py b/ot/lp/solver_1d.py
index 8b4d0c3..43763a9 100644
--- a/ot/lp/solver_1d.py
+++ b/ot/lp/solver_1d.py
@@ -100,11 +100,11 @@ def wasserstein_1d(u_values, v_values, u_weights=None, v_weights=None, p=1, requ
m = v_values.shape[0]
if u_weights is None:
- u_weights = nx.full(u_values.shape, 1. / n)
+ u_weights = nx.full(u_values.shape, 1. / n, type_as=u_values)
elif u_weights.ndim != u_values.ndim:
u_weights = nx.repeat(u_weights[..., None], u_values.shape[-1], -1)
if v_weights is None:
- v_weights = nx.full(v_values.shape, 1. / m)
+ v_weights = nx.full(v_values.shape, 1. / m, type_as=v_values)
elif v_weights.ndim != v_values.ndim:
v_weights = nx.repeat(v_weights[..., None], v_values.shape[-1], -1)
diff --git a/ot/optim.py b/ot/optim.py
index bd8ca26..f25e2c9 100644
--- a/ot/optim.py
+++ b/ot/optim.py
@@ -18,8 +18,10 @@ from .backend import get_backend
# The corresponding scipy function does not work for matrices
-def line_search_armijo(f, xk, pk, gfk, old_fval,
- args=(), c1=1e-4, alpha0=0.99):
+def line_search_armijo(
+ f, xk, pk, gfk, old_fval, args=(), c1=1e-4,
+ alpha0=0.99, alpha_min=None, alpha_max=None
+):
r"""
Armijo linesearch function that works with matrices
@@ -44,6 +46,10 @@ def line_search_armijo(f, xk, pk, gfk, old_fval,
:math:`c_1` const in armijo rule (>0)
alpha0 : float, optional
initial step (>0)
+ alpha_min : float, optional
+ minimum value for alpha
+ alpha_max : float, optional
+ maximum value for alpha
Returns
-------
@@ -77,14 +83,18 @@ def line_search_armijo(f, xk, pk, gfk, old_fval,
alpha, phi1 = scalar_search_armijo(
phi, phi0, derphi0, c1=c1, alpha0=alpha0)
- # scalar_search_armijo can return alpha > 1
- if alpha is not None:
- alpha = min(1, alpha)
- return alpha, fc[0], phi1
+ if alpha is None:
+ return 0., fc[0], phi0
+ else:
+ if alpha_min is not None or alpha_max is not None:
+ alpha = np.clip(alpha, alpha_min, alpha_max)
+ return float(alpha), fc[0], phi1
-def solve_linesearch(cost, G, deltaG, Mi, f_val,
- armijo=True, C1=None, C2=None, reg=None, Gc=None, constC=None, M=None):
+def solve_linesearch(
+ cost, G, deltaG, Mi, f_val, armijo=True, C1=None, C2=None,
+ reg=None, Gc=None, constC=None, M=None, alpha_min=None, alpha_max=None
+):
"""
Solve the linesearch in the FW iterations
@@ -115,6 +125,10 @@ def solve_linesearch(cost, G, deltaG, Mi, f_val,
Constant for the gromov cost. See :ref:`[24] <references-solve-linesearch>`. Only used and necessary when armijo=False
M : array-like (ns,nt), optional
Cost matrix between the features. Only used and necessary when armijo=False
+ alpha_min : float, optional
+ Minimum value for alpha
+ alpha_max : float, optional
+ Maximum value for alpha
Returns
-------
@@ -134,7 +148,9 @@ def solve_linesearch(cost, G, deltaG, Mi, f_val,
International Conference on Machine Learning (ICML). 2019.
"""
if armijo:
- alpha, fc, f_val = line_search_armijo(cost, G, deltaG, Mi, f_val)
+ alpha, fc, f_val = line_search_armijo(
+ cost, G, deltaG, Mi, f_val, alpha_min=alpha_min, alpha_max=alpha_max
+ )
else: # requires symetric matrices
G, deltaG, C1, C2, constC, M = list_to_array(G, deltaG, C1, C2, constC, M)
if isinstance(M, int) or isinstance(M, float):
@@ -148,6 +164,8 @@ def solve_linesearch(cost, G, deltaG, Mi, f_val,
c = cost(G)
alpha = solve_1d_linesearch_quad(a, b, c)
+ if alpha_min is not None or alpha_max is not None:
+ alpha = np.clip(alpha, alpha_min, alpha_max)
fc = None
f_val = cost(G + alpha * deltaG)
@@ -272,9 +290,10 @@ def cg(a, b, M, reg, f, df, G0=None, numItermax=200, numItermaxEmd=100000,
deltaG = Gc - G
# line search
- alpha, fc, f_val = solve_linesearch(cost, G, deltaG, Mi, f_val, reg=reg, M=M, Gc=Gc, **kwargs)
- if alpha is None:
- alpha = 0.0
+ alpha, fc, f_val = solve_linesearch(
+ cost, G, deltaG, Mi, f_val, reg=reg, M=M, Gc=Gc,
+ alpha_min=0., alpha_max=1., **kwargs
+ )
G = G + alpha * deltaG
@@ -420,7 +439,9 @@ def gcg(a, b, M, reg1, reg2, f, df, G0=None, numItermax=10,
# line search
dcost = Mi + reg1 * (1 + nx.log(G)) # ??
- alpha, fc, f_val = line_search_armijo(cost, G, deltaG, dcost, f_val)
+ alpha, fc, f_val = line_search_armijo(
+ cost, G, deltaG, dcost, f_val, alpha_min=0., alpha_max=1.
+ )
G = G + alpha * deltaG
diff --git a/ot/plot.py b/ot/plot.py
index 3e3bed7..2208c90 100644
--- a/ot/plot.py
+++ b/ot/plot.py
@@ -18,7 +18,7 @@ from matplotlib import gridspec
def plot1D_mat(a, b, M, title=''):
- """ Plot matrix :math:`\mathbf{M}` with the source and target 1D distribution
+ r""" Plot matrix :math:`\mathbf{M}` with the source and target 1D distribution
Creates a subplot with the source distribution :math:`\mathbf{a}` on the left and
target distribution :math:`\mathbf{b}` on the top. The matrix :math:`\mathbf{M}` is shown in between.
@@ -61,7 +61,7 @@ def plot1D_mat(a, b, M, title=''):
def plot2D_samples_mat(xs, xt, G, thr=1e-8, **kwargs):
- """ Plot matrix :math:`\mathbf{G}` in 2D with lines using alpha values
+ r""" Plot matrix :math:`\mathbf{G}` in 2D with lines using alpha values
Plot lines between source and target 2D samples with a color
proportional to the value of the matrix :math:`\mathbf{G}` between samples.
diff --git a/ot/utils.py b/ot/utils.py
index c878563..e6c93c8 100644
--- a/ot/utils.py
+++ b/ot/utils.py
@@ -182,7 +182,7 @@ def euclidean_distances(X, Y, squared=False):
return c
-def dist(x1, x2=None, metric='sqeuclidean', p=2):
+def dist(x1, x2=None, metric='sqeuclidean', p=2, w=None):
r"""Compute distance between samples in :math:`\mathbf{x_1}` and :math:`\mathbf{x_2}`
.. note:: This function is backend-compatible and will work on arrays
@@ -202,6 +202,10 @@ def dist(x1, x2=None, metric='sqeuclidean', p=2):
'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis',
'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean',
'sokalmichener', 'sokalsneath', 'sqeuclidean', 'wminkowski', 'yule'.
+ p : float, optional
+ p-norm for the Minkowski and the Weighted Minkowski metrics. Default value is 2.
+ w : array-like, rank 1
+ Weights for the weighted metrics.
Returns
@@ -221,7 +225,9 @@ def dist(x1, x2=None, metric='sqeuclidean', p=2):
if not get_backend(x1, x2).__name__ == 'numpy':
raise NotImplementedError()
else:
- return cdist(x1, x2, metric=metric, p=p)
+ if metric.endswith("minkowski"):
+ return cdist(x1, x2, metric=metric, p=p, w=w)
+ return cdist(x1, x2, metric=metric, w=w)
def dist0(n, method='lin_square'):