summaryrefslogtreecommitdiff
path: root/test/test_da.py
diff options
context:
space:
mode:
Diffstat (limited to 'test/test_da.py')
-rw-r--r--test/test_da.py469
1 files changed, 469 insertions, 0 deletions
diff --git a/test/test_da.py b/test/test_da.py
new file mode 100644
index 0000000..104a798
--- /dev/null
+++ b/test/test_da.py
@@ -0,0 +1,469 @@
+"""Tests for module da on Domain Adaptation """
+
+# Author: Remi Flamary <remi.flamary@unice.fr>
+#
+# License: MIT License
+
+import numpy as np
+from numpy.testing.utils import assert_allclose, assert_equal
+
+import ot
+from ot.datasets import get_data_classif
+from ot.utils import unif
+
+
+def test_sinkhorn_lpl1_transport_class():
+ """test_sinkhorn_transport
+ """
+
+ ns = 150
+ nt = 200
+
+ Xs, ys = get_data_classif('3gauss', ns)
+ Xt, yt = get_data_classif('3gauss2', nt)
+
+ clf = ot.da.SinkhornLpl1Transport()
+
+ # test its computed
+ clf.fit(Xs=Xs, ys=ys, Xt=Xt)
+ assert hasattr(clf, "cost_")
+ assert hasattr(clf, "coupling_")
+
+ # test dimensions of coupling
+ assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+
+ # test margin constraints
+ mu_s = unif(ns)
+ mu_t = unif(nt)
+ assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+
+ # test transform
+ transp_Xs = clf.transform(Xs=Xs)
+ assert_equal(transp_Xs.shape, Xs.shape)
+
+ Xs_new, _ = get_data_classif('3gauss', ns + 1)
+ transp_Xs_new = clf.transform(Xs_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xs_new.shape, Xs_new.shape)
+
+ # test inverse transform
+ transp_Xt = clf.inverse_transform(Xt=Xt)
+ assert_equal(transp_Xt.shape, Xt.shape)
+
+ Xt_new, _ = get_data_classif('3gauss2', nt + 1)
+ transp_Xt_new = clf.inverse_transform(Xt=Xt_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xt_new.shape, Xt_new.shape)
+
+ # test fit_transform
+ transp_Xs = clf.fit_transform(Xs=Xs, ys=ys, Xt=Xt)
+ assert_equal(transp_Xs.shape, Xs.shape)
+
+ # test semi supervised mode
+ clf = ot.da.SinkhornLpl1Transport()
+ clf.fit(Xs=Xs, ys=ys, Xt=Xt)
+ n_unsup = np.sum(clf.cost_)
+
+ # test semi supervised mode
+ clf = ot.da.SinkhornLpl1Transport()
+ clf.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
+ assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ n_semisup = np.sum(clf.cost_)
+
+ assert n_unsup != n_semisup, "semisupervised mode not working"
+
+
+def test_sinkhorn_l1l2_transport_class():
+ """test_sinkhorn_transport
+ """
+
+ ns = 150
+ nt = 200
+
+ Xs, ys = get_data_classif('3gauss', ns)
+ Xt, yt = get_data_classif('3gauss2', nt)
+
+ clf = ot.da.SinkhornL1l2Transport()
+
+ # test its computed
+ clf.fit(Xs=Xs, ys=ys, Xt=Xt)
+ assert hasattr(clf, "cost_")
+ assert hasattr(clf, "coupling_")
+ assert hasattr(clf, "log_")
+
+ # test dimensions of coupling
+ assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+
+ # test margin constraints
+ mu_s = unif(ns)
+ mu_t = unif(nt)
+ assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+
+ # test transform
+ transp_Xs = clf.transform(Xs=Xs)
+ assert_equal(transp_Xs.shape, Xs.shape)
+
+ Xs_new, _ = get_data_classif('3gauss', ns + 1)
+ transp_Xs_new = clf.transform(Xs_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xs_new.shape, Xs_new.shape)
+
+ # test inverse transform
+ transp_Xt = clf.inverse_transform(Xt=Xt)
+ assert_equal(transp_Xt.shape, Xt.shape)
+
+ Xt_new, _ = get_data_classif('3gauss2', nt + 1)
+ transp_Xt_new = clf.inverse_transform(Xt=Xt_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xt_new.shape, Xt_new.shape)
+
+ # test fit_transform
+ transp_Xs = clf.fit_transform(Xs=Xs, ys=ys, Xt=Xt)
+ assert_equal(transp_Xs.shape, Xs.shape)
+
+ # test semi supervised mode
+ clf = ot.da.SinkhornL1l2Transport()
+ clf.fit(Xs=Xs, ys=ys, Xt=Xt)
+ n_unsup = np.sum(clf.cost_)
+
+ # test semi supervised mode
+ clf = ot.da.SinkhornL1l2Transport()
+ clf.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
+ assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ n_semisup = np.sum(clf.cost_)
+
+ assert n_unsup != n_semisup, "semisupervised mode not working"
+
+ # check everything runs well with log=True
+ clf = ot.da.SinkhornL1l2Transport(log=True)
+ clf.fit(Xs=Xs, ys=ys, Xt=Xt)
+ assert len(clf.log_.keys()) != 0
+
+
+def test_sinkhorn_transport_class():
+ """test_sinkhorn_transport
+ """
+
+ ns = 150
+ nt = 200
+
+ Xs, ys = get_data_classif('3gauss', ns)
+ Xt, yt = get_data_classif('3gauss2', nt)
+
+ clf = ot.da.SinkhornTransport()
+
+ # test its computed
+ clf.fit(Xs=Xs, Xt=Xt)
+ assert hasattr(clf, "cost_")
+ assert hasattr(clf, "coupling_")
+ assert hasattr(clf, "log_")
+
+ # test dimensions of coupling
+ assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+
+ # test margin constraints
+ mu_s = unif(ns)
+ mu_t = unif(nt)
+ assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+
+ # test transform
+ transp_Xs = clf.transform(Xs=Xs)
+ assert_equal(transp_Xs.shape, Xs.shape)
+
+ Xs_new, _ = get_data_classif('3gauss', ns + 1)
+ transp_Xs_new = clf.transform(Xs_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xs_new.shape, Xs_new.shape)
+
+ # test inverse transform
+ transp_Xt = clf.inverse_transform(Xt=Xt)
+ assert_equal(transp_Xt.shape, Xt.shape)
+
+ Xt_new, _ = get_data_classif('3gauss2', nt + 1)
+ transp_Xt_new = clf.inverse_transform(Xt=Xt_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xt_new.shape, Xt_new.shape)
+
+ # test fit_transform
+ transp_Xs = clf.fit_transform(Xs=Xs, Xt=Xt)
+ assert_equal(transp_Xs.shape, Xs.shape)
+
+ # test semi supervised mode
+ clf = ot.da.SinkhornTransport()
+ clf.fit(Xs=Xs, Xt=Xt)
+ n_unsup = np.sum(clf.cost_)
+
+ # test semi supervised mode
+ clf = ot.da.SinkhornTransport()
+ clf.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
+ assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ n_semisup = np.sum(clf.cost_)
+
+ assert n_unsup != n_semisup, "semisupervised mode not working"
+
+ # check everything runs well with log=True
+ clf = ot.da.SinkhornTransport(log=True)
+ clf.fit(Xs=Xs, ys=ys, Xt=Xt)
+ assert len(clf.log_.keys()) != 0
+
+
+def test_emd_transport_class():
+ """test_sinkhorn_transport
+ """
+
+ ns = 150
+ nt = 200
+
+ Xs, ys = get_data_classif('3gauss', ns)
+ Xt, yt = get_data_classif('3gauss2', nt)
+
+ clf = ot.da.EMDTransport()
+
+ # test its computed
+ clf.fit(Xs=Xs, Xt=Xt)
+ assert hasattr(clf, "cost_")
+ assert hasattr(clf, "coupling_")
+
+ # test dimensions of coupling
+ assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+
+ # test margin constraints
+ mu_s = unif(ns)
+ mu_t = unif(nt)
+ assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+
+ # test transform
+ transp_Xs = clf.transform(Xs=Xs)
+ assert_equal(transp_Xs.shape, Xs.shape)
+
+ Xs_new, _ = get_data_classif('3gauss', ns + 1)
+ transp_Xs_new = clf.transform(Xs_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xs_new.shape, Xs_new.shape)
+
+ # test inverse transform
+ transp_Xt = clf.inverse_transform(Xt=Xt)
+ assert_equal(transp_Xt.shape, Xt.shape)
+
+ Xt_new, _ = get_data_classif('3gauss2', nt + 1)
+ transp_Xt_new = clf.inverse_transform(Xt=Xt_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xt_new.shape, Xt_new.shape)
+
+ # test fit_transform
+ transp_Xs = clf.fit_transform(Xs=Xs, Xt=Xt)
+ assert_equal(transp_Xs.shape, Xs.shape)
+
+ # test semi supervised mode
+ clf = ot.da.EMDTransport()
+ clf.fit(Xs=Xs, Xt=Xt)
+ n_unsup = np.sum(clf.cost_)
+
+ # test semi supervised mode
+ clf = ot.da.EMDTransport()
+ clf.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
+ assert_equal(clf.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
+ n_semisup = np.sum(clf.cost_)
+
+ assert n_unsup != n_semisup, "semisupervised mode not working"
+
+
+def test_mapping_transport_class():
+ """test_mapping_transport
+ """
+
+ ns = 150
+ nt = 200
+
+ Xs, ys = get_data_classif('3gauss', ns)
+ Xt, yt = get_data_classif('3gauss2', nt)
+ Xs_new, _ = get_data_classif('3gauss', ns + 1)
+
+ ##########################################################################
+ # kernel == linear mapping tests
+ ##########################################################################
+
+ # check computation and dimensions if bias == False
+ clf = ot.da.MappingTransport(kernel="linear", bias=False)
+ clf.fit(Xs=Xs, Xt=Xt)
+ assert hasattr(clf, "coupling_")
+ assert hasattr(clf, "mapping_")
+ assert hasattr(clf, "log_")
+
+ assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(clf.mapping_.shape, ((Xs.shape[1], Xt.shape[1])))
+
+ # test margin constraints
+ mu_s = unif(ns)
+ mu_t = unif(nt)
+ assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+
+ # test transform
+ transp_Xs = clf.transform(Xs=Xs)
+ assert_equal(transp_Xs.shape, Xs.shape)
+
+ transp_Xs_new = clf.transform(Xs_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xs_new.shape, Xs_new.shape)
+
+ # check computation and dimensions if bias == True
+ clf = ot.da.MappingTransport(kernel="linear", bias=True)
+ clf.fit(Xs=Xs, Xt=Xt)
+ assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(clf.mapping_.shape, ((Xs.shape[1] + 1, Xt.shape[1])))
+
+ # test margin constraints
+ mu_s = unif(ns)
+ mu_t = unif(nt)
+ assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+
+ # test transform
+ transp_Xs = clf.transform(Xs=Xs)
+ assert_equal(transp_Xs.shape, Xs.shape)
+
+ transp_Xs_new = clf.transform(Xs_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xs_new.shape, Xs_new.shape)
+
+ ##########################################################################
+ # kernel == gaussian mapping tests
+ ##########################################################################
+
+ # check computation and dimensions if bias == False
+ clf = ot.da.MappingTransport(kernel="gaussian", bias=False)
+ clf.fit(Xs=Xs, Xt=Xt)
+
+ assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(clf.mapping_.shape, ((Xs.shape[0], Xt.shape[1])))
+
+ # test margin constraints
+ mu_s = unif(ns)
+ mu_t = unif(nt)
+ assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+
+ # test transform
+ transp_Xs = clf.transform(Xs=Xs)
+ assert_equal(transp_Xs.shape, Xs.shape)
+
+ transp_Xs_new = clf.transform(Xs_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xs_new.shape, Xs_new.shape)
+
+ # check computation and dimensions if bias == True
+ clf = ot.da.MappingTransport(kernel="gaussian", bias=True)
+ clf.fit(Xs=Xs, Xt=Xt)
+ assert_equal(clf.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
+ assert_equal(clf.mapping_.shape, ((Xs.shape[0] + 1, Xt.shape[1])))
+
+ # test margin constraints
+ mu_s = unif(ns)
+ mu_t = unif(nt)
+ assert_allclose(np.sum(clf.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
+ assert_allclose(np.sum(clf.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)
+
+ # test transform
+ transp_Xs = clf.transform(Xs=Xs)
+ assert_equal(transp_Xs.shape, Xs.shape)
+
+ transp_Xs_new = clf.transform(Xs_new)
+
+ # check that the oos method is working
+ assert_equal(transp_Xs_new.shape, Xs_new.shape)
+
+ # check everything runs well with log=True
+ clf = ot.da.MappingTransport(kernel="gaussian", log=True)
+ clf.fit(Xs=Xs, Xt=Xt)
+ assert len(clf.log_.keys()) != 0
+
+
+def test_otda():
+
+ n_samples = 150 # nb samples
+ np.random.seed(0)
+
+ xs, ys = ot.datasets.get_data_classif('3gauss', n_samples)
+ xt, yt = ot.datasets.get_data_classif('3gauss2', n_samples)
+
+ a, b = ot.unif(n_samples), ot.unif(n_samples)
+
+ # LP problem
+ da_emd = ot.da.OTDA() # init class
+ da_emd.fit(xs, xt) # fit distributions
+ da_emd.interp() # interpolation of source samples
+ da_emd.predict(xs) # interpolation of source samples
+
+ np.testing.assert_allclose(a, np.sum(da_emd.G, 1))
+ np.testing.assert_allclose(b, np.sum(da_emd.G, 0))
+
+ # sinkhorn regularization
+ lambd = 1e-1
+ da_entrop = ot.da.OTDA_sinkhorn()
+ da_entrop.fit(xs, xt, reg=lambd)
+ da_entrop.interp()
+ da_entrop.predict(xs)
+
+ np.testing.assert_allclose(a, np.sum(da_entrop.G, 1), rtol=1e-3, atol=1e-3)
+ np.testing.assert_allclose(b, np.sum(da_entrop.G, 0), rtol=1e-3, atol=1e-3)
+
+ # non-convex Group lasso regularization
+ reg = 1e-1
+ eta = 1e0
+ da_lpl1 = ot.da.OTDA_lpl1()
+ da_lpl1.fit(xs, ys, xt, reg=reg, eta=eta)
+ da_lpl1.interp()
+ da_lpl1.predict(xs)
+
+ np.testing.assert_allclose(a, np.sum(da_lpl1.G, 1), rtol=1e-3, atol=1e-3)
+ np.testing.assert_allclose(b, np.sum(da_lpl1.G, 0), rtol=1e-3, atol=1e-3)
+
+ # True Group lasso regularization
+ reg = 1e-1
+ eta = 2e0
+ da_l1l2 = ot.da.OTDA_l1l2()
+ da_l1l2.fit(xs, ys, xt, reg=reg, eta=eta, numItermax=20, verbose=True)
+ da_l1l2.interp()
+ da_l1l2.predict(xs)
+
+ np.testing.assert_allclose(a, np.sum(da_l1l2.G, 1), rtol=1e-3, atol=1e-3)
+ np.testing.assert_allclose(b, np.sum(da_l1l2.G, 0), rtol=1e-3, atol=1e-3)
+
+ # linear mapping
+ da_emd = ot.da.OTDA_mapping_linear() # init class
+ da_emd.fit(xs, xt, numItermax=10) # fit distributions
+ da_emd.predict(xs) # interpolation of source samples
+
+ # nonlinear mapping
+ da_emd = ot.da.OTDA_mapping_kernel() # init class
+ da_emd.fit(xs, xt, numItermax=10) # fit distributions
+ da_emd.predict(xs) # interpolation of source samples
+
+
+# if __name__ == "__main__":
+
+# test_sinkhorn_transport_class()
+# test_emd_transport_class()
+# test_sinkhorn_l1l2_transport_class()
+# test_sinkhorn_lpl1_transport_class()
+# test_mapping_transport_class()