summaryrefslogtreecommitdiff
path: root/test/test_gromov.py
diff options
context:
space:
mode:
Diffstat (limited to 'test/test_gromov.py')
-rw-r--r--test/test_gromov.py246
1 files changed, 246 insertions, 0 deletions
diff --git a/test/test_gromov.py b/test/test_gromov.py
new file mode 100644
index 0000000..70fa83f
--- /dev/null
+++ b/test/test_gromov.py
@@ -0,0 +1,246 @@
+"""Tests for module gromov """
+
+# Author: Erwan Vautier <erwan.vautier@gmail.com>
+# Nicolas Courty <ncourty@irisa.fr>
+# Titouan Vayer <titouan.vayer@irisa.fr>
+#
+# License: MIT License
+
+import numpy as np
+import ot
+
+
+def test_gromov():
+ n_samples = 50 # nb samples
+
+ mu_s = np.array([0, 0])
+ cov_s = np.array([[1, 0], [0, 1]])
+
+ xs = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s, random_state=4)
+
+ xt = xs[::-1].copy()
+
+ p = ot.unif(n_samples)
+ q = ot.unif(n_samples)
+
+ C1 = ot.dist(xs, xs)
+ C2 = ot.dist(xt, xt)
+
+ C1 /= C1.max()
+ C2 /= C2.max()
+
+ G = ot.gromov.gromov_wasserstein(C1, C2, p, q, 'square_loss', verbose=True)
+
+ # check constratints
+ np.testing.assert_allclose(
+ p, G.sum(1), atol=1e-04) # cf convergence gromov
+ np.testing.assert_allclose(
+ q, G.sum(0), atol=1e-04) # cf convergence gromov
+
+ Id = (1 / (1.0 * n_samples)) * np.eye(n_samples, n_samples)
+
+ np.testing.assert_allclose(
+ G, np.flipud(Id), atol=1e-04)
+
+ gw, log = ot.gromov.gromov_wasserstein2(C1, C2, p, q, 'kl_loss', log=True)
+
+ G = log['T']
+
+ np.testing.assert_allclose(gw, 0, atol=1e-1, rtol=1e-1)
+
+ # check constratints
+ np.testing.assert_allclose(
+ p, G.sum(1), atol=1e-04) # cf convergence gromov
+ np.testing.assert_allclose(
+ q, G.sum(0), atol=1e-04) # cf convergence gromov
+
+
+def test_entropic_gromov():
+ n_samples = 50 # nb samples
+
+ mu_s = np.array([0, 0])
+ cov_s = np.array([[1, 0], [0, 1]])
+
+ xs = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s, random_state=42)
+
+ xt = xs[::-1].copy()
+
+ p = ot.unif(n_samples)
+ q = ot.unif(n_samples)
+
+ C1 = ot.dist(xs, xs)
+ C2 = ot.dist(xt, xt)
+
+ C1 /= C1.max()
+ C2 /= C2.max()
+
+ G = ot.gromov.entropic_gromov_wasserstein(
+ C1, C2, p, q, 'square_loss', epsilon=5e-4, verbose=True)
+
+ # check constratints
+ np.testing.assert_allclose(
+ p, G.sum(1), atol=1e-04) # cf convergence gromov
+ np.testing.assert_allclose(
+ q, G.sum(0), atol=1e-04) # cf convergence gromov
+
+ gw, log = ot.gromov.entropic_gromov_wasserstein2(
+ C1, C2, p, q, 'kl_loss', epsilon=1e-2, log=True)
+
+ G = log['T']
+
+ np.testing.assert_allclose(gw, 0, atol=1e-1, rtol=1e-1)
+
+ # check constratints
+ np.testing.assert_allclose(
+ p, G.sum(1), atol=1e-04) # cf convergence gromov
+ np.testing.assert_allclose(
+ q, G.sum(0), atol=1e-04) # cf convergence gromov
+
+
+def test_gromov_barycenter():
+ ns = 50
+ nt = 60
+
+ Xs, ys = ot.datasets.make_data_classif('3gauss', ns, random_state=42)
+ Xt, yt = ot.datasets.make_data_classif('3gauss2', nt, random_state=42)
+
+ C1 = ot.dist(Xs)
+ C2 = ot.dist(Xt)
+
+ n_samples = 3
+ Cb = ot.gromov.gromov_barycenters(n_samples, [C1, C2],
+ [ot.unif(ns), ot.unif(nt)
+ ], ot.unif(n_samples), [.5, .5],
+ 'square_loss', # 5e-4,
+ max_iter=100, tol=1e-3,
+ verbose=True)
+ np.testing.assert_allclose(Cb.shape, (n_samples, n_samples))
+
+ Cb2 = ot.gromov.gromov_barycenters(n_samples, [C1, C2],
+ [ot.unif(ns), ot.unif(nt)
+ ], ot.unif(n_samples), [.5, .5],
+ 'kl_loss', # 5e-4,
+ max_iter=100, tol=1e-3)
+ np.testing.assert_allclose(Cb2.shape, (n_samples, n_samples))
+
+
+def test_gromov_entropic_barycenter():
+ ns = 50
+ nt = 60
+
+ Xs, ys = ot.datasets.make_data_classif('3gauss', ns, random_state=42)
+ Xt, yt = ot.datasets.make_data_classif('3gauss2', nt, random_state=42)
+
+ C1 = ot.dist(Xs)
+ C2 = ot.dist(Xt)
+
+ n_samples = 3
+ Cb = ot.gromov.entropic_gromov_barycenters(n_samples, [C1, C2],
+ [ot.unif(ns), ot.unif(nt)
+ ], ot.unif(n_samples), [.5, .5],
+ 'square_loss', 2e-3,
+ max_iter=100, tol=1e-3,
+ verbose=True)
+ np.testing.assert_allclose(Cb.shape, (n_samples, n_samples))
+
+ Cb2 = ot.gromov.entropic_gromov_barycenters(n_samples, [C1, C2],
+ [ot.unif(ns), ot.unif(nt)
+ ], ot.unif(n_samples), [.5, .5],
+ 'kl_loss', 2e-3,
+ max_iter=100, tol=1e-3)
+ np.testing.assert_allclose(Cb2.shape, (n_samples, n_samples))
+
+
+def test_fgw():
+
+ n_samples = 50 # nb samples
+
+ mu_s = np.array([0, 0])
+ cov_s = np.array([[1, 0], [0, 1]])
+
+ xs = ot.datasets.make_2D_samples_gauss(n_samples, mu_s, cov_s, random_state=42)
+
+ xt = xs[::-1].copy()
+
+ ys = np.random.randn(xs.shape[0], 2)
+ yt = ys[::-1].copy()
+
+ p = ot.unif(n_samples)
+ q = ot.unif(n_samples)
+
+ C1 = ot.dist(xs, xs)
+ C2 = ot.dist(xt, xt)
+
+ C1 /= C1.max()
+ C2 /= C2.max()
+
+ M = ot.dist(ys, yt)
+ M /= M.max()
+
+ G = ot.gromov.fused_gromov_wasserstein(M, C1, C2, p, q, 'square_loss', alpha=0.5)
+
+ # check constratints
+ np.testing.assert_allclose(
+ p, G.sum(1), atol=1e-04) # cf convergence fgw
+ np.testing.assert_allclose(
+ q, G.sum(0), atol=1e-04) # cf convergence fgw
+
+ Id = (1 / (1.0 * n_samples)) * np.eye(n_samples, n_samples)
+
+ np.testing.assert_allclose(
+ G, np.flipud(Id), atol=1e-04) # cf convergence gromov
+
+ fgw, log = ot.gromov.fused_gromov_wasserstein2(M, C1, C2, p, q, 'square_loss', alpha=0.5, log=True)
+
+ G = log['T']
+
+ np.testing.assert_allclose(fgw, 0, atol=1e-1, rtol=1e-1)
+
+ # check constratints
+ np.testing.assert_allclose(
+ p, G.sum(1), atol=1e-04) # cf convergence gromov
+ np.testing.assert_allclose(
+ q, G.sum(0), atol=1e-04) # cf convergence gromov
+
+
+def test_fgw_barycenter():
+ np.random.seed(42)
+
+ ns = 50
+ nt = 60
+
+ Xs, ys = ot.datasets.make_data_classif('3gauss', ns, random_state=42)
+ Xt, yt = ot.datasets.make_data_classif('3gauss2', nt, random_state=42)
+
+ ys = np.random.randn(Xs.shape[0], 2)
+ yt = np.random.randn(Xt.shape[0], 2)
+
+ C1 = ot.dist(Xs)
+ C2 = ot.dist(Xt)
+
+ n_samples = 3
+ X, C = ot.gromov.fgw_barycenters(n_samples, [ys, yt], [C1, C2], [ot.unif(ns), ot.unif(nt)], [.5, .5], 0.5,
+ fixed_structure=False, fixed_features=False,
+ p=ot.unif(n_samples), loss_fun='square_loss',
+ max_iter=100, tol=1e-3)
+ np.testing.assert_allclose(C.shape, (n_samples, n_samples))
+ np.testing.assert_allclose(X.shape, (n_samples, ys.shape[1]))
+
+ xalea = np.random.randn(n_samples, 2)
+ init_C = ot.dist(xalea, xalea)
+
+ X, C = ot.gromov.fgw_barycenters(n_samples, [ys, yt], [C1, C2], ps=[ot.unif(ns), ot.unif(nt)], lambdas=[.5, .5], alpha=0.5,
+ fixed_structure=True, init_C=init_C, fixed_features=False,
+ p=ot.unif(n_samples), loss_fun='square_loss',
+ max_iter=100, tol=1e-3)
+ np.testing.assert_allclose(C.shape, (n_samples, n_samples))
+ np.testing.assert_allclose(X.shape, (n_samples, ys.shape[1]))
+
+ init_X = np.random.randn(n_samples, ys.shape[1])
+
+ X, C = ot.gromov.fgw_barycenters(n_samples, [ys, yt], [C1, C2], [ot.unif(ns), ot.unif(nt)], [.5, .5], 0.5,
+ fixed_structure=False, fixed_features=True, init_X=init_X,
+ p=ot.unif(n_samples), loss_fun='square_loss',
+ max_iter=100, tol=1e-3)
+ np.testing.assert_allclose(C.shape, (n_samples, n_samples))
+ np.testing.assert_allclose(X.shape, (n_samples, ys.shape[1]))