From 13d57f433c6a91797950318b6ca2896d5aaa009a Mon Sep 17 00:00:00 2001 From: RĂ©mi Flamary Date: Wed, 30 Aug 2017 17:01:22 +0200 Subject: move da --- examples/da/plot_otda_classes.py | 150 --------------------- examples/da/plot_otda_color_images.py | 165 ----------------------- examples/da/plot_otda_d2.py | 173 ------------------------- examples/da/plot_otda_mapping.py | 126 ------------------ examples/da/plot_otda_mapping_colors_images.py | 171 ------------------------ examples/plot_OT_2D_samples.py | 2 +- 6 files changed, 1 insertion(+), 786 deletions(-) delete mode 100644 examples/da/plot_otda_classes.py delete mode 100644 examples/da/plot_otda_color_images.py delete mode 100644 examples/da/plot_otda_d2.py delete mode 100644 examples/da/plot_otda_mapping.py delete mode 100644 examples/da/plot_otda_mapping_colors_images.py diff --git a/examples/da/plot_otda_classes.py b/examples/da/plot_otda_classes.py deleted file mode 100644 index ec57a37..0000000 --- a/examples/da/plot_otda_classes.py +++ /dev/null @@ -1,150 +0,0 @@ -# -*- coding: utf-8 -*- -""" -======================== -OT for domain adaptation -======================== - -This example introduces a domain adaptation in a 2D setting and the 4 OTDA -approaches currently supported in POT. - -""" - -# Authors: Remi Flamary -# Stanislas Chambon -# -# License: MIT License - -import matplotlib.pylab as pl -import ot - - -############################################################################## -# generate data -############################################################################## - -n_source_samples = 150 -n_target_samples = 150 - -Xs, ys = ot.datasets.get_data_classif('3gauss', n_source_samples) -Xt, yt = ot.datasets.get_data_classif('3gauss2', n_target_samples) - - -############################################################################## -# Instantiate the different transport algorithms and fit them -############################################################################## - -# EMD Transport -ot_emd = ot.da.EMDTransport() -ot_emd.fit(Xs=Xs, Xt=Xt) - -# Sinkhorn Transport -ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1) -ot_sinkhorn.fit(Xs=Xs, Xt=Xt) - -# Sinkhorn Transport with Group lasso regularization -ot_lpl1 = ot.da.SinkhornLpl1Transport(reg_e=1e-1, reg_cl=1e0) -ot_lpl1.fit(Xs=Xs, ys=ys, Xt=Xt) - -# Sinkhorn Transport with Group lasso regularization l1l2 -ot_l1l2 = ot.da.SinkhornL1l2Transport(reg_e=1e-1, reg_cl=2e0, max_iter=20, - verbose=True) -ot_l1l2.fit(Xs=Xs, ys=ys, Xt=Xt) - -# transport source samples onto target samples -transp_Xs_emd = ot_emd.transform(Xs=Xs) -transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=Xs) -transp_Xs_lpl1 = ot_lpl1.transform(Xs=Xs) -transp_Xs_l1l2 = ot_l1l2.transform(Xs=Xs) - - -############################################################################## -# Fig 1 : plots source and target samples -############################################################################## - -pl.figure(1, figsize=(10, 5)) -pl.subplot(1, 2, 1) -pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples') -pl.xticks([]) -pl.yticks([]) -pl.legend(loc=0) -pl.title('Source samples') - -pl.subplot(1, 2, 2) -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples') -pl.xticks([]) -pl.yticks([]) -pl.legend(loc=0) -pl.title('Target samples') -pl.tight_layout() - - -############################################################################## -# Fig 2 : plot optimal couplings and transported samples -############################################################################## - -param_img = {'interpolation': 'nearest', 'cmap': 'spectral'} - -pl.figure(2, figsize=(15, 8)) -pl.subplot(2, 4, 1) -pl.imshow(ot_emd.coupling_, **param_img) -pl.xticks([]) -pl.yticks([]) -pl.title('Optimal coupling\nEMDTransport') - -pl.subplot(2, 4, 2) -pl.imshow(ot_sinkhorn.coupling_, **param_img) -pl.xticks([]) -pl.yticks([]) -pl.title('Optimal coupling\nSinkhornTransport') - -pl.subplot(2, 4, 3) -pl.imshow(ot_lpl1.coupling_, **param_img) -pl.xticks([]) -pl.yticks([]) -pl.title('Optimal coupling\nSinkhornLpl1Transport') - -pl.subplot(2, 4, 4) -pl.imshow(ot_l1l2.coupling_, **param_img) -pl.xticks([]) -pl.yticks([]) -pl.title('Optimal coupling\nSinkhornL1l2Transport') - -pl.subplot(2, 4, 5) -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', - label='Target samples', alpha=0.3) -pl.scatter(transp_Xs_emd[:, 0], transp_Xs_emd[:, 1], c=ys, - marker='+', label='Transp samples', s=30) -pl.xticks([]) -pl.yticks([]) -pl.title('Transported samples\nEmdTransport') -pl.legend(loc="lower left") - -pl.subplot(2, 4, 6) -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', - label='Target samples', alpha=0.3) -pl.scatter(transp_Xs_sinkhorn[:, 0], transp_Xs_sinkhorn[:, 1], c=ys, - marker='+', label='Transp samples', s=30) -pl.xticks([]) -pl.yticks([]) -pl.title('Transported samples\nSinkhornTransport') - -pl.subplot(2, 4, 7) -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', - label='Target samples', alpha=0.3) -pl.scatter(transp_Xs_lpl1[:, 0], transp_Xs_lpl1[:, 1], c=ys, - marker='+', label='Transp samples', s=30) -pl.xticks([]) -pl.yticks([]) -pl.title('Transported samples\nSinkhornLpl1Transport') - -pl.subplot(2, 4, 8) -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', - label='Target samples', alpha=0.3) -pl.scatter(transp_Xs_l1l2[:, 0], transp_Xs_l1l2[:, 1], c=ys, - marker='+', label='Transp samples', s=30) -pl.xticks([]) -pl.yticks([]) -pl.title('Transported samples\nSinkhornL1l2Transport') -pl.tight_layout() - -pl.show() diff --git a/examples/da/plot_otda_color_images.py b/examples/da/plot_otda_color_images.py deleted file mode 100644 index 3984afb..0000000 --- a/examples/da/plot_otda_color_images.py +++ /dev/null @@ -1,165 +0,0 @@ -# -*- coding: utf-8 -*- -""" -======================================================== -OT for domain adaptation with image color adaptation [6] -======================================================== - -This example presents a way of transferring colors between two image -with Optimal Transport as introduced in [6] - -[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014). -Regularized discrete optimal transport. -SIAM Journal on Imaging Sciences, 7(3), 1853-1882. -""" - -# Authors: Remi Flamary -# Stanislas Chambon -# -# License: MIT License - -import numpy as np -from scipy import ndimage -import matplotlib.pylab as pl -import ot - - -r = np.random.RandomState(42) - - -def im2mat(I): - """Converts and image to matrix (one pixel per line)""" - return I.reshape((I.shape[0] * I.shape[1], I.shape[2])) - - -def mat2im(X, shape): - """Converts back a matrix to an image""" - return X.reshape(shape) - - -def minmax(I): - return np.clip(I, 0, 1) - - -############################################################################## -# generate data -############################################################################## - -# Loading images -I1 = ndimage.imread('../../data/ocean_day.jpg').astype(np.float64) / 256 -I2 = ndimage.imread('../../data/ocean_sunset.jpg').astype(np.float64) / 256 - -X1 = im2mat(I1) -X2 = im2mat(I2) - -# training samples -nb = 1000 -idx1 = r.randint(X1.shape[0], size=(nb,)) -idx2 = r.randint(X2.shape[0], size=(nb,)) - -Xs = X1[idx1, :] -Xt = X2[idx2, :] - - -############################################################################## -# Instantiate the different transport algorithms and fit them -############################################################################## - -# EMDTransport -ot_emd = ot.da.EMDTransport() -ot_emd.fit(Xs=Xs, Xt=Xt) - -# SinkhornTransport -ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1) -ot_sinkhorn.fit(Xs=Xs, Xt=Xt) - -# prediction between images (using out of sample prediction as in [6]) -transp_Xs_emd = ot_emd.transform(Xs=X1) -transp_Xt_emd = ot_emd.inverse_transform(Xt=X2) - -transp_Xs_sinkhorn = ot_emd.transform(Xs=X1) -transp_Xt_sinkhorn = ot_emd.inverse_transform(Xt=X2) - -I1t = minmax(mat2im(transp_Xs_emd, I1.shape)) -I2t = minmax(mat2im(transp_Xt_emd, I2.shape)) - -I1te = minmax(mat2im(transp_Xs_sinkhorn, I1.shape)) -I2te = minmax(mat2im(transp_Xt_sinkhorn, I2.shape)) - - -############################################################################## -# plot original image -############################################################################## - -pl.figure(1, figsize=(6.4, 3)) - -pl.subplot(1, 2, 1) -pl.imshow(I1) -pl.axis('off') -pl.title('Image 1') - -pl.subplot(1, 2, 2) -pl.imshow(I2) -pl.axis('off') -pl.title('Image 2') - - -############################################################################## -# scatter plot of colors -############################################################################## - -pl.figure(2, figsize=(6.4, 3)) - -pl.subplot(1, 2, 1) -pl.scatter(Xs[:, 0], Xs[:, 2], c=Xs) -pl.axis([0, 1, 0, 1]) -pl.xlabel('Red') -pl.ylabel('Blue') -pl.title('Image 1') - -pl.subplot(1, 2, 2) -pl.scatter(Xt[:, 0], Xt[:, 2], c=Xt) -pl.axis([0, 1, 0, 1]) -pl.xlabel('Red') -pl.ylabel('Blue') -pl.title('Image 2') -pl.tight_layout() - - -############################################################################## -# plot new images -############################################################################## - -pl.figure(3, figsize=(8, 4)) - -pl.subplot(2, 3, 1) -pl.imshow(I1) -pl.axis('off') -pl.title('Image 1') - -pl.subplot(2, 3, 2) -pl.imshow(I1t) -pl.axis('off') -pl.title('Image 1 Adapt') - -pl.subplot(2, 3, 3) -pl.imshow(I1te) -pl.axis('off') -pl.title('Image 1 Adapt (reg)') - -pl.subplot(2, 3, 4) -pl.imshow(I2) -pl.axis('off') -pl.title('Image 2') - -pl.subplot(2, 3, 5) -pl.imshow(I2t) -pl.axis('off') -pl.title('Image 2 Adapt') - -pl.subplot(2, 3, 6) -pl.imshow(I2te) -pl.axis('off') -pl.title('Image 2 Adapt (reg)') -pl.tight_layout() - -pl.show() diff --git a/examples/da/plot_otda_d2.py b/examples/da/plot_otda_d2.py deleted file mode 100644 index 3daa0a6..0000000 --- a/examples/da/plot_otda_d2.py +++ /dev/null @@ -1,173 +0,0 @@ -# -*- coding: utf-8 -*- -""" -============================== -OT for empirical distributions -============================== - -This example introduces a domain adaptation in a 2D setting. It explicits -the problem of domain adaptation and introduces some optimal transport -approaches to solve it. - -Quantities such as optimal couplings, greater coupling coefficients and -transported samples are represented in order to give a visual understanding -of what the transport methods are doing. -""" - -# Authors: Remi Flamary -# Stanislas Chambon -# -# License: MIT License - -import matplotlib.pylab as pl -import ot - - -############################################################################## -# generate data -############################################################################## - -n_samples_source = 150 -n_samples_target = 150 - -Xs, ys = ot.datasets.get_data_classif('3gauss', n_samples_source) -Xt, yt = ot.datasets.get_data_classif('3gauss2', n_samples_target) - -# Cost matrix -M = ot.dist(Xs, Xt, metric='sqeuclidean') - - -############################################################################## -# Instantiate the different transport algorithms and fit them -############################################################################## - -# EMD Transport -ot_emd = ot.da.EMDTransport() -ot_emd.fit(Xs=Xs, Xt=Xt) - -# Sinkhorn Transport -ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1) -ot_sinkhorn.fit(Xs=Xs, Xt=Xt) - -# Sinkhorn Transport with Group lasso regularization -ot_lpl1 = ot.da.SinkhornLpl1Transport(reg_e=1e-1, reg_cl=1e0) -ot_lpl1.fit(Xs=Xs, ys=ys, Xt=Xt) - -# transport source samples onto target samples -transp_Xs_emd = ot_emd.transform(Xs=Xs) -transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=Xs) -transp_Xs_lpl1 = ot_lpl1.transform(Xs=Xs) - - -############################################################################## -# Fig 1 : plots source and target samples + matrix of pairwise distance -############################################################################## - -pl.figure(1, figsize=(10, 10)) -pl.subplot(2, 2, 1) -pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples') -pl.xticks([]) -pl.yticks([]) -pl.legend(loc=0) -pl.title('Source samples') - -pl.subplot(2, 2, 2) -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples') -pl.xticks([]) -pl.yticks([]) -pl.legend(loc=0) -pl.title('Target samples') - -pl.subplot(2, 2, 3) -pl.imshow(M, interpolation='nearest') -pl.xticks([]) -pl.yticks([]) -pl.title('Matrix of pairwise distances') -pl.tight_layout() - - -############################################################################## -# Fig 2 : plots optimal couplings for the different methods -############################################################################## - -pl.figure(2, figsize=(10, 6)) - -pl.subplot(2, 3, 1) -pl.imshow(ot_emd.coupling_, interpolation='nearest') -pl.xticks([]) -pl.yticks([]) -pl.title('Optimal coupling\nEMDTransport') - -pl.subplot(2, 3, 2) -pl.imshow(ot_sinkhorn.coupling_, interpolation='nearest') -pl.xticks([]) -pl.yticks([]) -pl.title('Optimal coupling\nSinkhornTransport') - -pl.subplot(2, 3, 3) -pl.imshow(ot_lpl1.coupling_, interpolation='nearest') -pl.xticks([]) -pl.yticks([]) -pl.title('Optimal coupling\nSinkhornLpl1Transport') - -pl.subplot(2, 3, 4) -ot.plot.plot2D_samples_mat(Xs, Xt, ot_emd.coupling_, c=[.5, .5, 1]) -pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples') -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples') -pl.xticks([]) -pl.yticks([]) -pl.title('Main coupling coefficients\nEMDTransport') - -pl.subplot(2, 3, 5) -ot.plot.plot2D_samples_mat(Xs, Xt, ot_sinkhorn.coupling_, c=[.5, .5, 1]) -pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples') -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples') -pl.xticks([]) -pl.yticks([]) -pl.title('Main coupling coefficients\nSinkhornTransport') - -pl.subplot(2, 3, 6) -ot.plot.plot2D_samples_mat(Xs, Xt, ot_lpl1.coupling_, c=[.5, .5, 1]) -pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples') -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples') -pl.xticks([]) -pl.yticks([]) -pl.title('Main coupling coefficients\nSinkhornLpl1Transport') -pl.tight_layout() - - -############################################################################## -# Fig 3 : plot transported samples -############################################################################## - -# display transported samples -pl.figure(4, figsize=(10, 4)) -pl.subplot(1, 3, 1) -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', - label='Target samples', alpha=0.5) -pl.scatter(transp_Xs_emd[:, 0], transp_Xs_emd[:, 1], c=ys, - marker='+', label='Transp samples', s=30) -pl.title('Transported samples\nEmdTransport') -pl.legend(loc=0) -pl.xticks([]) -pl.yticks([]) - -pl.subplot(1, 3, 2) -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', - label='Target samples', alpha=0.5) -pl.scatter(transp_Xs_sinkhorn[:, 0], transp_Xs_sinkhorn[:, 1], c=ys, - marker='+', label='Transp samples', s=30) -pl.title('Transported samples\nSinkhornTransport') -pl.xticks([]) -pl.yticks([]) - -pl.subplot(1, 3, 3) -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', - label='Target samples', alpha=0.5) -pl.scatter(transp_Xs_lpl1[:, 0], transp_Xs_lpl1[:, 1], c=ys, - marker='+', label='Transp samples', s=30) -pl.title('Transported samples\nSinkhornLpl1Transport') -pl.xticks([]) -pl.yticks([]) - -pl.tight_layout() -pl.show() diff --git a/examples/da/plot_otda_mapping.py b/examples/da/plot_otda_mapping.py deleted file mode 100644 index 09d2cb4..0000000 --- a/examples/da/plot_otda_mapping.py +++ /dev/null @@ -1,126 +0,0 @@ -# -*- coding: utf-8 -*- -""" -=============================================== -OT mapping estimation for domain adaptation [8] -=============================================== - -This example presents how to use MappingTransport to estimate at the same -time both the coupling transport and approximate the transport map with either -a linear or a kernelized mapping as introduced in [8] - -[8] M. Perrot, N. Courty, R. Flamary, A. Habrard, - "Mapping estimation for discrete optimal transport", - Neural Information Processing Systems (NIPS), 2016. -""" - -# Authors: Remi Flamary -# Stanislas Chambon -# -# License: MIT License - -import numpy as np -import matplotlib.pylab as pl -import ot - - -############################################################################## -# generate data -############################################################################## - -n_source_samples = 100 -n_target_samples = 100 -theta = 2 * np.pi / 20 -noise_level = 0.1 - -Xs, ys = ot.datasets.get_data_classif( - 'gaussrot', n_source_samples, nz=noise_level) -Xs_new, _ = ot.datasets.get_data_classif( - 'gaussrot', n_source_samples, nz=noise_level) -Xt, yt = ot.datasets.get_data_classif( - 'gaussrot', n_target_samples, theta=theta, nz=noise_level) - -# one of the target mode changes its variance (no linear mapping) -Xt[yt == 2] *= 3 -Xt = Xt + 4 - - -############################################################################## -# Instantiate the different transport algorithms and fit them -############################################################################## - -# MappingTransport with linear kernel -ot_mapping_linear = ot.da.MappingTransport( - kernel="linear", mu=1e0, eta=1e-8, bias=True, - max_iter=20, verbose=True) - -ot_mapping_linear.fit(Xs=Xs, Xt=Xt) - -# for original source samples, transform applies barycentric mapping -transp_Xs_linear = ot_mapping_linear.transform(Xs=Xs) - -# for out of source samples, transform applies the linear mapping -transp_Xs_linear_new = ot_mapping_linear.transform(Xs=Xs_new) - - -# MappingTransport with gaussian kernel -ot_mapping_gaussian = ot.da.MappingTransport( - kernel="gaussian", eta=1e-5, mu=1e-1, bias=True, sigma=1, - max_iter=10, verbose=True) -ot_mapping_gaussian.fit(Xs=Xs, Xt=Xt) - -# for original source samples, transform applies barycentric mapping -transp_Xs_gaussian = ot_mapping_gaussian.transform(Xs=Xs) - -# for out of source samples, transform applies the gaussian mapping -transp_Xs_gaussian_new = ot_mapping_gaussian.transform(Xs=Xs_new) - - -############################################################################## -# plot data -############################################################################## - -pl.figure(1, (10, 5)) -pl.clf() -pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples') -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples') -pl.legend(loc=0) -pl.title('Source and target distributions') - - -############################################################################## -# plot transported samples -############################################################################## - -pl.figure(2) -pl.clf() -pl.subplot(2, 2, 1) -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', - label='Target samples', alpha=.2) -pl.scatter(transp_Xs_linear[:, 0], transp_Xs_linear[:, 1], c=ys, marker='+', - label='Mapped source samples') -pl.title("Bary. mapping (linear)") -pl.legend(loc=0) - -pl.subplot(2, 2, 2) -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', - label='Target samples', alpha=.2) -pl.scatter(transp_Xs_linear_new[:, 0], transp_Xs_linear_new[:, 1], - c=ys, marker='+', label='Learned mapping') -pl.title("Estim. mapping (linear)") - -pl.subplot(2, 2, 3) -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', - label='Target samples', alpha=.2) -pl.scatter(transp_Xs_gaussian[:, 0], transp_Xs_gaussian[:, 1], c=ys, - marker='+', label='barycentric mapping') -pl.title("Bary. mapping (kernel)") - -pl.subplot(2, 2, 4) -pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', - label='Target samples', alpha=.2) -pl.scatter(transp_Xs_gaussian_new[:, 0], transp_Xs_gaussian_new[:, 1], c=ys, - marker='+', label='Learned mapping') -pl.title("Estim. mapping (kernel)") -pl.tight_layout() - -pl.show() diff --git a/examples/da/plot_otda_mapping_colors_images.py b/examples/da/plot_otda_mapping_colors_images.py deleted file mode 100644 index a628b05..0000000 --- a/examples/da/plot_otda_mapping_colors_images.py +++ /dev/null @@ -1,171 +0,0 @@ -# -*- coding: utf-8 -*- -""" -==================================================================================== -OT for domain adaptation with image color adaptation [6] with mapping estimation [8] -==================================================================================== - -[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014). Regularized - discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), - 1853-1882. -[8] M. Perrot, N. Courty, R. Flamary, A. Habrard, "Mapping estimation for - discrete optimal transport", Neural Information Processing Systems (NIPS), - 2016. - -""" - -# Authors: Remi Flamary -# Stanislas Chambon -# -# License: MIT License - -import numpy as np -from scipy import ndimage -import matplotlib.pylab as pl -import ot - -r = np.random.RandomState(42) - - -def im2mat(I): - """Converts and image to matrix (one pixel per line)""" - return I.reshape((I.shape[0] * I.shape[1], I.shape[2])) - - -def mat2im(X, shape): - """Converts back a matrix to an image""" - return X.reshape(shape) - - -def minmax(I): - return np.clip(I, 0, 1) - - -############################################################################## -# Generate data -############################################################################## - -# Loading images -I1 = ndimage.imread('../../data/ocean_day.jpg').astype(np.float64) / 256 -I2 = ndimage.imread('../../data/ocean_sunset.jpg').astype(np.float64) / 256 - - -X1 = im2mat(I1) -X2 = im2mat(I2) - -# training samples -nb = 1000 -idx1 = r.randint(X1.shape[0], size=(nb,)) -idx2 = r.randint(X2.shape[0], size=(nb,)) - -Xs = X1[idx1, :] -Xt = X2[idx2, :] - - -############################################################################## -# Domain adaptation for pixel distribution transfer -############################################################################## - -# EMDTransport -ot_emd = ot.da.EMDTransport() -ot_emd.fit(Xs=Xs, Xt=Xt) -transp_Xs_emd = ot_emd.transform(Xs=X1) -Image_emd = minmax(mat2im(transp_Xs_emd, I1.shape)) - -# SinkhornTransport -ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1) -ot_sinkhorn.fit(Xs=Xs, Xt=Xt) -transp_Xs_sinkhorn = ot_emd.transform(Xs=X1) -Image_sinkhorn = minmax(mat2im(transp_Xs_sinkhorn, I1.shape)) - -ot_mapping_linear = ot.da.MappingTransport( - mu=1e0, eta=1e-8, bias=True, max_iter=20, verbose=True) -ot_mapping_linear.fit(Xs=Xs, Xt=Xt) - -X1tl = ot_mapping_linear.transform(Xs=X1) -Image_mapping_linear = minmax(mat2im(X1tl, I1.shape)) - -ot_mapping_gaussian = ot.da.MappingTransport( - mu=1e0, eta=1e-2, sigma=1, bias=False, max_iter=10, verbose=True) -ot_mapping_gaussian.fit(Xs=Xs, Xt=Xt) - -X1tn = ot_mapping_gaussian.transform(Xs=X1) # use the estimated mapping -Image_mapping_gaussian = minmax(mat2im(X1tn, I1.shape)) - - -############################################################################## -# plot original images -############################################################################## - -pl.figure(1, figsize=(6.4, 3)) -pl.subplot(1, 2, 1) -pl.imshow(I1) -pl.axis('off') -pl.title('Image 1') - -pl.subplot(1, 2, 2) -pl.imshow(I2) -pl.axis('off') -pl.title('Image 2') -pl.tight_layout() - - -############################################################################## -# plot pixel values distribution -############################################################################## - -pl.figure(2, figsize=(6.4, 5)) - -pl.subplot(1, 2, 1) -pl.scatter(Xs[:, 0], Xs[:, 2], c=Xs) -pl.axis([0, 1, 0, 1]) -pl.xlabel('Red') -pl.ylabel('Blue') -pl.title('Image 1') - -pl.subplot(1, 2, 2) -pl.scatter(Xt[:, 0], Xt[:, 2], c=Xt) -pl.axis([0, 1, 0, 1]) -pl.xlabel('Red') -pl.ylabel('Blue') -pl.title('Image 2') -pl.tight_layout() - - -############################################################################## -# plot transformed images -############################################################################## - -pl.figure(2, figsize=(10, 5)) - -pl.subplot(2, 3, 1) -pl.imshow(I1) -pl.axis('off') -pl.title('Im. 1') - -pl.subplot(2, 3, 4) -pl.imshow(I2) -pl.axis('off') -pl.title('Im. 2') - -pl.subplot(2, 3, 2) -pl.imshow(Image_emd) -pl.axis('off') -pl.title('EmdTransport') - -pl.subplot(2, 3, 5) -pl.imshow(Image_sinkhorn) -pl.axis('off') -pl.title('SinkhornTransport') - -pl.subplot(2, 3, 3) -pl.imshow(Image_mapping_linear) -pl.axis('off') -pl.title('MappingTransport (linear)') - -pl.subplot(2, 3, 6) -pl.imshow(Image_mapping_gaussian) -pl.axis('off') -pl.title('MappingTransport (gaussian)') -pl.tight_layout() - -pl.show() diff --git a/examples/plot_OT_2D_samples.py b/examples/plot_OT_2D_samples.py index 023e645..2a42dc0 100644 --- a/examples/plot_OT_2D_samples.py +++ b/examples/plot_OT_2D_samples.py @@ -65,7 +65,7 @@ pl.title('OT matrix with samples') #%% sinkhorn # reg term -lambd = 5e-4 +lambd = 1e-3 Gs = ot.sinkhorn(a, b, M, lambd) -- cgit v1.2.3