From 72b1a2822be81a877210d0bf11520ae4559b6d51 Mon Sep 17 00:00:00 2001 From: ievred Date: Mon, 20 Apr 2020 13:00:51 +0200 Subject: conflit readme --- README.md | 250 +++++++++++++++++++++++++++++++------------------------------- 1 file changed, 127 insertions(+), 123 deletions(-) diff --git a/README.md b/README.md index 5b7f505..28d2b2a 100644 --- a/README.md +++ b/README.md @@ -1,60 +1,59 @@ # POT: Python Optimal Transport -import ot -[![PyPI version](https: // badge.fury.io / py / POT.svg)](https: // badge.fury.io / py / POT) -[![Anaconda Cloud](https: // anaconda.org / conda - forge / pot / badges / version.svg)](https: // anaconda.org / conda - forge / pot) -[![Build Status](https: // travis - ci.org / rflamary / POT.svg?branch=master)](https: // travis - ci.org / rflamary / POT) -[![Documentation Status](https: // readthedocs.org / projects / pot / badge /?version=latest)](http: // pot.readthedocs.io / en / latest /?badge=latest) -[![Downloads](https: // pepy.tech / badge / pot)](https: // pepy.tech / project / pot) -[![Anaconda downloads](https: // anaconda.org / conda - forge / pot / badges / downloads.svg)](https: // anaconda.org / conda - forge / pot) -[![License](https: // anaconda.org / conda - forge / pot / badges / license.svg)](https: // github.com / rflamary / POT / blob / master / LICENSE) +[![PyPI version](https://badge.fury.io/py/POT.svg)](https://badge.fury.io/py/POT) +[![Anaconda Cloud](https://anaconda.org/conda-forge/pot/badges/version.svg)](https://anaconda.org/conda-forge/pot) +[![Build Status](https://travis-ci.org/rflamary/POT.svg?branch=master)](https://travis-ci.org/rflamary/POT) +[![Documentation Status](https://readthedocs.org/projects/pot/badge/?version=latest)](http://pot.readthedocs.io/en/latest/?badge=latest) +[![Downloads](https://pepy.tech/badge/pot)](https://pepy.tech/project/pot) +[![Anaconda downloads](https://anaconda.org/conda-forge/pot/badges/downloads.svg)](https://anaconda.org/conda-forge/pot) +[![License](https://anaconda.org/conda-forge/pot/badges/license.svg)](https://github.com/rflamary/POT/blob/master/LICENSE) + This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning. It provides the following solvers: -* OT Network Flow solver for the linear program / Earth Movers Distance[1]. -* Entropic regularization OT solver with Sinkhorn Knopp Algorithm[2], stabilized version[9][10] and greedy Sinkhorn[22] with optional GPU implementation(requires cupy). -* Sinkhorn divergence[23] and entropic regularization OT from empirical data. -* Smooth optimal transport solvers(dual and semi - dual) for KL and squared L2 regularizations[17]. -* Non regularized Wasserstein barycenters[16] with LP solver(only small scale). -* Bregman projections for Wasserstein barycenter[3], convolutional barycenter[21] and unmixing[4]. -* Optimal transport for domain adaptation with group lasso and Laplacian regularization[5] -* Conditional gradient[6] and Generalized conditional gradient for regularized OT[7]. -* Linear OT[14] and Joint OT matrix and mapping estimation[8]. -* Wasserstein Discriminant Analysis[11](requires autograd + pymanopt). -* Gromov - Wasserstein distances and barycenters([13] and regularized[12]) -* Stochastic Optimization for Large - scale Optimal Transport(semi - dual problem[18] and dual problem[19]) -* Non regularized free support Wasserstein barycenters[20]. -* Unbalanced OT with KL relaxation distance and barycenter[10, 25]. -* Screening Sinkhorn Algorithm for OT[26]. -* JCPOT algorithm for multi - source domain adaptation with target shift[27]. - -Some demonstrations(both in Python and Jupyter Notebook format) are available in the examples folder. +* OT Network Flow solver for the linear program/ Earth Movers Distance [1]. +* Entropic regularization OT solver with Sinkhorn Knopp Algorithm [2], stabilized version [9][10] and greedy Sinkhorn [22] with optional GPU implementation (requires cupy). +* Sinkhorn divergence [23] and entropic regularization OT from empirical data. +* Smooth optimal transport solvers (dual and semi-dual) for KL and squared L2 regularizations [17]. +* Non regularized Wasserstein barycenters [16] with LP solver (only small scale). +* Bregman projections for Wasserstein barycenter [3], convolutional barycenter [21] and unmixing [4]. +* Optimal transport for domain adaptation with group lasso regularization [5] +* Conditional gradient [6] and Generalized conditional gradient for regularized OT [7]. +* Linear OT [14] and Joint OT matrix and mapping estimation [8]. +* Wasserstein Discriminant Analysis [11] (requires autograd + pymanopt). +* Gromov-Wasserstein distances and barycenters ([13] and regularized [12]) +* Stochastic Optimization for Large-scale Optimal Transport (semi-dual problem [18] and dual problem [19]) +* Non regularized free support Wasserstein barycenters [20]. +* Unbalanced OT with KL relaxation distance and barycenter [10, 25]. +* Screening Sinkhorn Algorithm for OT [26]. +* JCPOT algorithm for multi-source domain adaptation with target shift [27]. +* Partial Wasserstein and Gromov-Wasserstein (exact [29] and entropic [3] formulations). + +Some demonstrations (both in Python and Jupyter Notebook format) are available in the examples folder. #### Using and citing the toolbox If you use this toolbox in your research and find it useful, please cite POT using the following bibtex reference: ``` - - @misc{flamary2017pot, - title = {POT Python Optimal Transport library}, - author = {Flamary, R{'e}mi and Courty, Nicolas}, - url = {https: // github.com / rflamary / POT}, - year = {2017} - } +title={POT Python Optimal Transport library}, +author={Flamary, R{'e}mi and Courty, Nicolas}, +url={https://github.com/rflamary/POT}, +year={2017} +} ``` ## Installation -The library has been tested on Linux, MacOSX and Windows. It requires a C + + compiler for building / installing the EMD solver and relies on the following Python modules: +The library has been tested on Linux, MacOSX and Windows. It requires a C++ compiler for building/installing the EMD solver and relies on the following Python modules: -- Numpy ( >= 1.11) -- Scipy ( >= 1.0) -- Cython ( >= 0.23) -- Matplotlib ( >= 1.5) +- Numpy (>=1.11) +- Scipy (>=1.0) +- Cython (>=0.23) +- Matplotlib (>=1.5) #### Pip installation @@ -70,33 +69,35 @@ pip install POT ``` or get the very latest version by downloading it and then running: ``` -python setup.py install - -user # for user install (no root) +python setup.py install --user # for user install (no root) ``` + #### Anaconda installation with conda-forge -If you use the Anaconda python distribution, POT is available in [conda - forge](https: // conda - forge.org). To install it and the required dependencies: +If you use the Anaconda python distribution, POT is available in [conda-forge](https://conda-forge.org). To install it and the required dependencies: ``` -conda install - c conda - forge pot +conda install -c conda-forge pot ``` #### Post installation check After a correct installation, you should be able to import the module without errors: ```python +import ot ``` Note that for easier access the module is name ot instead of pot. ### Dependencies -Some sub - modules require additional dependences which are discussed below +Some sub-modules require additional dependences which are discussed below -* **ot.dr ** (Wasserstein dimensionality reduction) depends on autograd and pymanopt that can be installed with: +* **ot.dr** (Wasserstein dimensionality reduction) depends on autograd and pymanopt that can be installed with: ``` pip install pymanopt autograd ``` -* **ot.gpu ** (GPU accelerated OT) depends on cupy that have to be installed following instructions on[this page](https: // docs - cupy.chainer.org / en / stable / install.html). +* **ot.gpu** (GPU accelerated OT) depends on cupy that have to be installed following instructions on [this page](https://docs-cupy.chainer.org/en/stable/install.html). obviously you need CUDA installed and a compatible GPU. @@ -107,157 +108,160 @@ obviously you need CUDA installed and a compatible GPU. * Import the toolbox ```python +import ot ``` * Compute Wasserstein distances ```python # a,b are 1D histograms (sum to 1 and positive) # M is the ground cost matrix -Wd = ot.emd2(a, b, M) # exact linear program -Wd_reg = ot.sinkhorn2(a, b, M, reg) # entropic regularized OT +Wd=ot.emd2(a,b,M) # exact linear program +Wd_reg=ot.sinkhorn2(a,b,M,reg) # entropic regularized OT # if b is a matrix compute all distances to a and return a vector ``` * Compute OT matrix ```python # a,b are 1D histograms (sum to 1 and positive) # M is the ground cost matrix -T = ot.emd(a, b, M) # exact linear program -T_reg = ot.sinkhorn(a, b, M, reg) # entropic regularized OT +T=ot.emd(a,b,M) # exact linear program +T_reg=ot.sinkhorn(a,b,M,reg) # entropic regularized OT ``` * Compute Wasserstein barycenter ```python # A is a n*d matrix containing d 1D histograms # M is the ground cost matrix -ba = ot.barycenter(A, M, reg) # reg is regularization parameter +ba=ot.barycenter(A,M,reg) # reg is regularization parameter ``` + + ### Examples and Notebooks -The examples folder contain several examples and use case for the library. The full documentation is available on [Readthedocs](http: // pot.readthedocs.io / ). +The examples folder contain several examples and use case for the library. The full documentation is available on [Readthedocs](http://pot.readthedocs.io/). -Here is a list of the Python notebooks available [here](https: // github.com / rflamary / POT / blob / master / notebooks / ) if you want a quick look: +Here is a list of the Python notebooks available [here](https://github.com/rflamary/POT/blob/master/notebooks/) if you want a quick look: -* [1D optimal transport](https: // github.com / rflamary / POT / blob / master / notebooks / plot_OT_1D.ipynb) -* [OT Ground Loss](https: // github.com / rflamary / POT / blob / master / notebooks / plot_OT_L1_vs_L2.ipynb) -* [Multiple EMD computation](https: // github.com / rflamary / POT / blob / master / notebooks / plot_compute_emd.ipynb) -* [2D optimal transport on empirical distributions](https: // github.com / rflamary / POT / blob / master / notebooks / plot_OT_2D_samples.ipynb) -* [1D Wasserstein barycenter](https: // github.com / rflamary / POT / blob / master / notebooks / plot_barycenter_1D.ipynb) -* [OT with user provided regularization](https: // github.com / rflamary / POT / blob / master / notebooks / plot_optim_OTreg.ipynb) -* [Domain adaptation with optimal transport](https: // github.com / rflamary / POT / blob / master / notebooks / plot_otda_d2.ipynb) -* [Color transfer in images](https: // github.com / rflamary / POT / blob / master / notebooks / plot_otda_color_images.ipynb) -* [OT mapping estimation for domain adaptation](https: // github.com / rflamary / POT / blob / master / notebooks / plot_otda_mapping.ipynb) -* [OT mapping estimation for color transfer in images](https: // github.com / rflamary / POT / blob / master / notebooks / plot_otda_mapping_colors_images.ipynb) -* [Wasserstein Discriminant Analysis](https: // github.com / rflamary / POT / blob / master / notebooks / plot_WDA.ipynb) -* [Gromov Wasserstein](https: // github.com / rflamary / POT / blob / master / notebooks / plot_gromov.ipynb) -* [Gromov Wasserstein Barycenter](https: // github.com / rflamary / POT / blob / master / notebooks / plot_gromov_barycenter.ipynb) -* [Fused Gromov Wasserstein](https: // github.com / rflamary / POT / blob / master / notebooks / plot_fgw.ipynb) -* [Fused Gromov Wasserstein Barycenter](https: // github.com / rflamary / POT / blob / master / notebooks / plot_barycenter_fgw.ipynb) +* [1D optimal transport](https://github.com/rflamary/POT/blob/master/notebooks/plot_OT_1D.ipynb) +* [OT Ground Loss](https://github.com/rflamary/POT/blob/master/notebooks/plot_OT_L1_vs_L2.ipynb) +* [Multiple EMD computation](https://github.com/rflamary/POT/blob/master/notebooks/plot_compute_emd.ipynb) +* [2D optimal transport on empirical distributions](https://github.com/rflamary/POT/blob/master/notebooks/plot_OT_2D_samples.ipynb) +* [1D Wasserstein barycenter](https://github.com/rflamary/POT/blob/master/notebooks/plot_barycenter_1D.ipynb) +* [OT with user provided regularization](https://github.com/rflamary/POT/blob/master/notebooks/plot_optim_OTreg.ipynb) +* [Domain adaptation with optimal transport](https://github.com/rflamary/POT/blob/master/notebooks/plot_otda_d2.ipynb) +* [Color transfer in images](https://github.com/rflamary/POT/blob/master/notebooks/plot_otda_color_images.ipynb) +* [OT mapping estimation for domain adaptation](https://github.com/rflamary/POT/blob/master/notebooks/plot_otda_mapping.ipynb) +* [OT mapping estimation for color transfer in images](https://github.com/rflamary/POT/blob/master/notebooks/plot_otda_mapping_colors_images.ipynb) +* [Wasserstein Discriminant Analysis](https://github.com/rflamary/POT/blob/master/notebooks/plot_WDA.ipynb) +* [Gromov Wasserstein](https://github.com/rflamary/POT/blob/master/notebooks/plot_gromov.ipynb) +* [Gromov Wasserstein Barycenter](https://github.com/rflamary/POT/blob/master/notebooks/plot_gromov_barycenter.ipynb) +* [Fused Gromov Wasserstein](https://github.com/rflamary/POT/blob/master/notebooks/plot_fgw.ipynb) +* [Fused Gromov Wasserstein Barycenter](https://github.com/rflamary/POT/blob/master/notebooks/plot_barycenter_fgw.ipynb) -You can also see the notebooks with [Jupyter nbviewer](https: // nbviewer.jupyter.org / github / rflamary / POT / tree / master / notebooks / ). +You can also see the notebooks with [Jupyter nbviewer](https://nbviewer.jupyter.org/github/rflamary/POT/tree/master/notebooks/). ## Acknowledgements This toolbox has been created and is maintained by -* [Rémi Flamary](http: // remi.flamary.com / ) -* [Nicolas Courty](http: // people.irisa.fr / Nicolas.Courty / ) +* [Rémi Flamary](http://remi.flamary.com/) +* [Nicolas Courty](http://people.irisa.fr/Nicolas.Courty/) -The contributors to this library are +The contributors to this library are -* [Alexandre Gramfort](http: // alexandre.gramfort.net / ) -* [Laetitia Chapel](http: // people.irisa.fr / Laetitia.Chapel / ) -* [Michael Perrot](http: // perso.univ - st - etienne.fr / pem82055 / ) (Mapping estimation) -* [Léo Gautheron](https: // github.com / aje)(GPU implementation) -* [Nathalie Gayraud](https: // www.linkedin.com / in / nathalie - t - h - gayraud /?ppe=1) -* [Stanislas Chambon](https: // slasnista.github.io / ) -* [Antoine Rolet](https: // arolet.github.io / ) -* Erwan Vautier(Gromov - Wasserstein) -* [Kilian Fatras](https: // kilianfatras.github.io / ) -* [Alain Rakotomamonjy](https: // sites.google.com / site / alainrakotomamonjy / home) -* [Vayer Titouan](https: // tvayer.github.io / ) -* [Hicham Janati](https: // hichamjanati.github.io / ) (Unbalanced OT) -* [Romain Tavenard](https: // rtavenar.github.io / ) (1d Wasserstein) -* [Mokhtar Z. Alaya](http: // mzalaya.github.io / ) (Screenkhorn) -* [Ievgen Redko](https: // ievred.github.io /) +* [Alexandre Gramfort](http://alexandre.gramfort.net/) +* [Laetitia Chapel](http://people.irisa.fr/Laetitia.Chapel/) +* [Michael Perrot](http://perso.univ-st-etienne.fr/pem82055/) (Mapping estimation) +* [Léo Gautheron](https://github.com/aje) (GPU implementation) +* [Nathalie Gayraud](https://www.linkedin.com/in/nathalie-t-h-gayraud/?ppe=1) +* [Stanislas Chambon](https://slasnista.github.io/) +* [Antoine Rolet](https://arolet.github.io/) +* Erwan Vautier (Gromov-Wasserstein) +* [Kilian Fatras](https://kilianfatras.github.io/) +* [Alain Rakotomamonjy](https://sites.google.com/site/alainrakotomamonjy/home) +* [Vayer Titouan](https://tvayer.github.io/) +* [Hicham Janati](https://hichamjanati.github.io/) (Unbalanced OT) +* [Romain Tavenard](https://rtavenar.github.io/) (1d Wasserstein) +* [Mokhtar Z. Alaya](http://mzalaya.github.io/) (Screenkhorn) -This toolbox benefit a lot from open source research and we would like to thank the following persons for providing some code(in various languages): +This toolbox benefit a lot from open source research and we would like to thank the following persons for providing some code (in various languages): -* [Gabriel Peyré](http: // gpeyre.github.io / ) (Wasserstein Barycenters in Matlab) -* [Nicolas Bonneel](http: // liris.cnrs.fr / ~nbonneel /) (C++ code for EMD) -* [Marco Cuturi](http: // marcocuturi.net / ) (Sinkhorn Knopp in Matlab/Cuda) +* [Gabriel Peyré](http://gpeyre.github.io/) (Wasserstein Barycenters in Matlab) +* [Nicolas Bonneel](http://liris.cnrs.fr/~nbonneel/) ( C++ code for EMD) +* [Marco Cuturi](http://marcocuturi.net/) (Sinkhorn Knopp in Matlab/Cuda) ## Contributions and code of conduct -Every contribution is welcome and should respect the[contribution guidelines](CONTRIBUTING.md). Each member of the project is expected to follow the[code of conduct](CODE_OF_CONDUCT.md). +Every contribution is welcome and should respect the [contribution guidelines](CONTRIBUTING.md). Each member of the project is expected to follow the [code of conduct](CODE_OF_CONDUCT.md). ## Support You can ask questions and join the development discussion: -* On the[POT Slack channel](https: // pot - toolbox.slack.com) -* On the POT [mailing list](https: // mail.python.org / mm3 / mailman3 / lists / pot.python.org / ) +* On the [POT Slack channel](https://pot-toolbox.slack.com) +* On the POT [mailing list](https://mail.python.org/mm3/mailman3/lists/pot.python.org/) -You can also post bug reports and feature requests in Github issues. Make sure to read our[guidelines](CONTRIBUTING.md) first. +You can also post bug reports and feature requests in Github issues. Make sure to read our [guidelines](CONTRIBUTING.md) first. ## References -[1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011, December). [Displacement interpolation using Lagrangian mass transport](https: // people.csail.mit.edu / sparis / publi / 2011 / sigasia / Bonneel_11_Displacement_Interpolation.pdf). In ACM Transactions on Graphics(TOG)(Vol. 30, No. 6, p. 158). ACM. +[1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011, December). [Displacement interpolation using Lagrangian mass transport](https://people.csail.mit.edu/sparis/publi/2011/sigasia/Bonneel_11_Displacement_Interpolation.pdf). In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM. + +[2] Cuturi, M. (2013). [Sinkhorn distances: Lightspeed computation of optimal transport](https://arxiv.org/pdf/1306.0895.pdf). In Advances in Neural Information Processing Systems (pp. 2292-2300). + +[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). [Iterative Bregman projections for regularized transportation problems](https://arxiv.org/pdf/1412.5154.pdf). SIAM Journal on Scientific Computing, 37(2), A1111-A1138. -[2] Cuturi, M. (2013). [Sinkhorn distances: Lightspeed computation of optimal transport](https: // arxiv.org / pdf / 1306.0895.pdf). In Advances in Neural Information Processing Systems(pp. 2292 - 2300). +[4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti, [Supervised planetary unmixing with optimal transport](https://hal.archives-ouvertes.fr/hal-01377236/document), Whorkshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2016. -[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). [Iterative Bregman projections for regularized transportation problems](https: // arxiv.org / pdf / 1412.5154.pdf). SIAM Journal on Scientific Computing, 37(2), A1111 - A1138. +[5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, [Optimal Transport for Domain Adaptation](https://arxiv.org/pdf/1507.00504.pdf), in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1 -[4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti, [Supervised planetary unmixing with optimal transport](https: // hal.archives - ouvertes.fr / hal - 01377236 / document), Whorkshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing(WHISPERS), 2016. +[6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). [Regularized discrete optimal transport](https://arxiv.org/pdf/1307.5551.pdf). SIAM Journal on Imaging Sciences, 7(3), 1853-1882. -[5] N. Courty -R. Flamary -D. Tuia -A. Rakotomamonjy, [Optimal Transport for Domain Adaptation](https: // arxiv.org / pdf / 1507.00504.pdf), in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.PP, no.99, pp.1 - 1 +[7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). [Generalized conditional gradient: analysis of convergence and applications](https://arxiv.org/pdf/1510.06567.pdf). arXiv preprint arXiv:1510.06567. -[6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). [Regularized discrete optimal transport](https: // arxiv.org / pdf / 1307.5551.pdf). SIAM Journal on Imaging Sciences, 7(3), 1853 - 1882. +[8] M. Perrot, N. Courty, R. Flamary, A. Habrard (2016), [Mapping estimation for discrete optimal transport](http://remi.flamary.com/biblio/perrot2016mapping.pdf), Neural Information Processing Systems (NIPS). -[7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). [Generalized conditional gradient: analysis of convergence and applications](https: // arxiv.org / pdf / 1510.06567.pdf). arXiv preprint arXiv: 1510.06567. +[9] Schmitzer, B. (2016). [Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems](https://arxiv.org/pdf/1610.06519.pdf). arXiv preprint arXiv:1610.06519. -[8] M. Perrot, N. Courty, R. Flamary, A. Habrard(2016), [Mapping estimation for discrete optimal transport](http: // remi.flamary.com / biblio / perrot2016mapping.pdf), Neural Information Processing Systems(NIPS). +[10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). [Scaling algorithms for unbalanced transport problems](https://arxiv.org/pdf/1607.05816.pdf). arXiv preprint arXiv:1607.05816. -[9] Schmitzer, B. (2016). [Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems](https: // arxiv.org / pdf / 1610.06519.pdf). arXiv preprint arXiv: 1610.06519. +[11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016). [Wasserstein Discriminant Analysis](https://arxiv.org/pdf/1608.08063.pdf). arXiv preprint arXiv:1608.08063. -[10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). [Scaling algorithms for unbalanced transport problems](https: // arxiv.org / pdf / 1607.05816.pdf). arXiv preprint arXiv: 1607.05816. +[12] Gabriel Peyré, Marco Cuturi, and Justin Solomon (2016), [Gromov-Wasserstein averaging of kernel and distance matrices](http://proceedings.mlr.press/v48/peyre16.html) International Conference on Machine Learning (ICML). -[11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016). [Wasserstein Discriminant Analysis](https: // arxiv.org / pdf / 1608.08063.pdf). arXiv preprint arXiv: 1608.08063. +[13] Mémoli, Facundo (2011). [Gromov–Wasserstein distances and the metric approach to object matching](https://media.adelaide.edu.au/acvt/Publications/2011/2011-Gromov%E2%80%93Wasserstein%20Distances%20and%20the%20Metric%20Approach%20to%20Object%20Matching.pdf). Foundations of computational mathematics 11.4 : 417-487. -[12] Gabriel Peyré, Marco Cuturi, and Justin Solomon(2016), [Gromov - Wasserstein averaging of kernel and distance matrices](http: // proceedings.mlr.press / v48 / peyre16.html) International Conference on Machine Learning(ICML). +[14] Knott, M. and Smith, C. S. (1984).[On the optimal mapping of distributions](https://link.springer.com/article/10.1007/BF00934745), Journal of Optimization Theory and Applications Vol 43. -[13] Mémoli, Facundo(2011). [Gromov–Wasserstein distances and the metric approach to object matching](https: // media.adelaide.edu.au / acvt / Publications / 2011 / 2011 - Gromov % E2 % 80 % 93Wasserstein % 20Distances % 20and % 20the % 20Metric % 20Approach % 20to % 20Object % 20Matching.pdf). Foundations of computational mathematics 11.4: 417 - 487. +[15] Peyré, G., & Cuturi, M. (2018). [Computational Optimal Transport](https://arxiv.org/pdf/1803.00567.pdf) . -[14] Knott, M. and Smith, C. S. (1984).[On the optimal mapping of distributions](https: // link.springer.com / article / 10.1007 / BF00934745), Journal of Optimization Theory and Applications Vol 43. +[16] Agueh, M., & Carlier, G. (2011). [Barycenters in the Wasserstein space](https://hal.archives-ouvertes.fr/hal-00637399/document). SIAM Journal on Mathematical Analysis, 43(2), 904-924. -[15] Peyré, G., & Cuturi, M. (2018). [Computational Optimal Transport](https: // arxiv.org / pdf / 1803.00567.pdf) . +[17] Blondel, M., Seguy, V., & Rolet, A. (2018). [Smooth and Sparse Optimal Transport](https://arxiv.org/abs/1710.06276). Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics (AISTATS). -[16] Agueh, M., & Carlier, G. (2011). [Barycenters in the Wasserstein space](https: // hal.archives - ouvertes.fr / hal - 00637399 / document). SIAM Journal on Mathematical Analysis, 43(2), 904 - 924. +[18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) [Stochastic Optimization for Large-scale Optimal Transport](https://arxiv.org/abs/1605.08527). Advances in Neural Information Processing Systems (2016). -[17] Blondel, M., Seguy, V., & Rolet, A. (2018). [Smooth and Sparse Optimal Transport](https: // arxiv.org / abs / 1710.06276). Proceedings of the Twenty - First International Conference on Artificial Intelligence and Statistics(AISTATS). +[19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. [Large-scale Optimal Transport and Mapping Estimation](https://arxiv.org/pdf/1711.02283.pdf). International Conference on Learning Representation (2018) -[18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016)[Stochastic Optimization for Large - scale Optimal Transport](https: // arxiv.org / abs / 1605.08527). Advances in Neural Information Processing Systems(2016). +[20] Cuturi, M. and Doucet, A. (2014) [Fast Computation of Wasserstein Barycenters](http://proceedings.mlr.press/v32/cuturi14.html). International Conference in Machine Learning -[19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A. & Blondel, M. [Large - scale Optimal Transport and Mapping Estimation](https: // arxiv.org / pdf / 1711.02283.pdf). International Conference on Learning Representation(2018) +[21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A. & Guibas, L. (2015). [Convolutional wasserstein distances: Efficient optimal transportation on geometric domains](https://dl.acm.org/citation.cfm?id=2766963). ACM Transactions on Graphics (TOG), 34(4), 66. -[20] Cuturi, M. and Doucet, A. (2014)[Fast Computation of Wasserstein Barycenters](http: // proceedings.mlr.press / v32 / cuturi14.html). International Conference in Machine Learning +[22] J. Altschuler, J.Weed, P. Rigollet, (2017) [Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration](https://papers.nips.cc/paper/6792-near-linear-time-approximation-algorithms-for-optimal-transport-via-sinkhorn-iteration.pdf), Advances in Neural Information Processing Systems (NIPS) 31 -[21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A. & Guibas, L. (2015). [Convolutional wasserstein distances: Efficient optimal transportation on geometric domains](https: // dl.acm.org / citation.cfm?id=2766963). ACM Transactions on Graphics(TOG), 34(4), 66. +[23] Aude, G., Peyré, G., Cuturi, M., [Learning Generative Models with Sinkhorn Divergences](https://arxiv.org/abs/1706.00292), Proceedings of the Twenty-First International Conference on Artficial Intelligence and Statistics, (AISTATS) 21, 2018 -[22] J. Altschuler, J.Weed, P. Rigollet, (2017)[Near - linear time approximation algorithms for optimal transport via Sinkhorn iteration](https: // papers.nips.cc / paper / 6792 - near - linear - time - approximation - algorithms - for-optimal - transport - via - sinkhorn - iteration.pdf), Advances in Neural Information Processing Systems(NIPS) 31 +[24] Vayer, T., Chapel, L., Flamary, R., Tavenard, R. and Courty, N. (2019). [Optimal Transport for structured data with application on graphs](http://proceedings.mlr.press/v97/titouan19a.html) Proceedings of the 36th International Conference on Machine Learning (ICML). -[23] Aude, G., Peyré, G., Cuturi, M., [Learning Generative Models with Sinkhorn Divergences](https: // arxiv.org / abs / 1706.00292), Proceedings of the Twenty - First International Conference on Artficial Intelligence and Statistics, (AISTATS) 21, 2018 +[25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. (2015). [Learning with a Wasserstein Loss](http://cbcl.mit.edu/wasserstein/) Advances in Neural Information Processing Systems (NIPS). -[24] Vayer, T., Chapel, L., Flamary, R., Tavenard, R. and Courty, N. (2019). [Optimal Transport for structured data with application on graphs](http: // proceedings.mlr.press / v97 / titouan19a.html) Proceedings of the 36th International Conference on Machine Learning(ICML). +[26] Alaya M. Z., Bérar M., Gasso G., Rakotomamonjy A. (2019). [Screening Sinkhorn Algorithm for Regularized Optimal Transport](https://papers.nips.cc/paper/9386-screening-sinkhorn-algorithm-for-regularized-optimal-transport), Advances in Neural Information Processing Systems 33 (NeurIPS). -[25] Frogner C., Zhang C., Mobahi H., Araya - Polo M., Poggio T. (2015). [Learning with a Wasserstein Loss](http: // cbcl.mit.edu / wasserstein / ) Advances in Neural Information Processing Systems (NIPS). +[27] Redko I., Courty N., Flamary R., Tuia D. (2019). [Optimal Transport for Multi-source Domain Adaptation under Target Shift](http://proceedings.mlr.press/v89/redko19a.html), Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics (AISTATS) 22, 2019. -[26] Alaya M. Z., Bérar M., Gasso G., Rakotomamonjy A. (2019). [Screening Sinkhorn Algorithm for Regularized Optimal Transport](https: // papers.nips.cc / paper / 9386 - screening - sinkhorn - algorithm - for-regularized - optimal - transport), Advances in Neural Information Processing Systems 33 (NeurIPS). +[28] Caffarelli, L. A., McCann, R. J. (2020). [Free boundaries in optimal transport and Monge-Ampere obstacle problems](http://www.math.toronto.edu/~mccann/papers/annals2010.pdf), Annals of mathematics, 673-730. -[27] Redko I., Courty N., Flamary R., Tuia D. (2019). [Optimal Transport for Multi - source Domain Adaptation under Target Shift](http: // proceedings.mlr.press / v89 / redko19a.html), Proceedings of the Twenty - Second International Conference on Artificial Intelligence and Statistics(AISTATS) 22, 2019. +[29] Chapel, L., Alaya, M., Gasso, G. (2019). [Partial Gromov-Wasserstein with Applications on Positive-Unlabeled Learning](https://arxiv.org/abs/2002.08276), arXiv preprint arXiv:2002.08276. -- cgit v1.2.3