From cfdbbd21642c6082164b84db78c2ead07499a113 Mon Sep 17 00:00:00 2001 From: Hicham Janati Date: Fri, 19 Jul 2019 17:04:14 +0200 Subject: remove square in convergence check add unbalanced with stabilization add unbalanced tests with stabilization fix doctest examples add xvfb in travis remove explicit call xvfb in travis change alpha to reg_m minor flake8 remove redundant sink definitions + better doc and naming add stabilized unbalanced barycenter + add not converged warnings add test for stable barycenter add generic barycenter func + make method funcs private fix typo + add method test for barycenters fix doc examples + add xml to gitignore fix whitespace in example change logsumexp import - scipy deprecation warning fix doctest improve naming + add stable barycenter in bregman add test for stable bar + test the method arg in bregman --- .gitignore | 3 + ot/__init__.py | 18 +- ot/bregman.py | 530 +++++++++++++++++++++----------- ot/unbalanced.py | 803 +++++++++++++++++++++++++++++++++++++++--------- pytest.ini | 0 test/test_bregman.py | 72 ++++- test/test_unbalanced.py | 163 +++++++--- 7 files changed, 1205 insertions(+), 384 deletions(-) create mode 100644 pytest.ini diff --git a/.gitignore b/.gitignore index 42a9aad..dadf84c 100644 --- a/.gitignore +++ b/.gitignore @@ -59,6 +59,9 @@ coverage.xml *.mo *.pot +# xml +*.xml + # Django stuff: *.log local_settings.py diff --git a/ot/__init__.py b/ot/__init__.py index 35ae6fc..7d9615a 100644 --- a/ot/__init__.py +++ b/ot/__init__.py @@ -1,7 +1,7 @@ """ -This is the main module of the POT toolbox. It provides easy access to -a number of sub-modules and functions described below. +This is the main module of the POT toolbox. It provides easy access to +a number of sub-modules and functions described below. .. note:: @@ -14,27 +14,27 @@ a number of sub-modules and functions described below. - :any:`ot.lp` contains OT solvers for the exact (Linear Program) OT problems. - :any:`ot.smooth` contains OT solvers for the regularized (l2 and kl) smooth OT problems. - - :any:`ot.gromov` contains solvers for Gromov-Wasserstein and Fused Gromov + - :any:`ot.gromov` contains solvers for Gromov-Wasserstein and Fused Gromov Wasserstein problems. - - :any:`ot.optim` contains generic solvers OT based optimization problems + - :any:`ot.optim` contains generic solvers OT based optimization problems - :any:`ot.da` contains classes and function related to Monge mapping estimation and Domain Adaptation (DA). - :any:`ot.gpu` contains GPU (cupy) implementation of some OT solvers - - :any:`ot.dr` contains Dimension Reduction (DR) methods such as Wasserstein + - :any:`ot.dr` contains Dimension Reduction (DR) methods such as Wasserstein Discriminant Analysis. - - :any:`ot.utils` contains utility functions such as distance computation and - timing. + - :any:`ot.utils` contains utility functions such as distance computation and + timing. - :any:`ot.datasets` contains toy dataset generation functions. - :any:`ot.plot` contains visualization functions - :any:`ot.stochastic` contains stochastic solvers for regularized OT. - :any:`ot.unbalanced` contains solvers for regularized unbalanced OT. .. warning:: - The list of automatically imported sub-modules is as follows: + The list of automatically imported sub-modules is as follows: :py:mod:`ot.lp`, :py:mod:`ot.bregman`, :py:mod:`ot.optim` :py:mod:`ot.utils`, :py:mod:`ot.datasets`, :py:mod:`ot.gromov`, :py:mod:`ot.smooth` - :py:mod:`ot.stochastic` + :py:mod:`ot.stochastic` The following sub-modules are not imported due to additional dependencies: diff --git a/ot/bregman.py b/ot/bregman.py index 70e4208..2f27d58 100644 --- a/ot/bregman.py +++ b/ot/bregman.py @@ -7,10 +7,12 @@ Bregman projections for regularized OT # Nicolas Courty # Kilian Fatras # Titouan Vayer +# Hicham Janati # # License: MIT License import numpy as np +import warnings from .utils import unif, dist @@ -31,7 +33,7 @@ def sinkhorn(a, b, M, reg, method='sinkhorn', numItermax=1000, \gamma\geq 0 where : - - M is the (ns,nt) metric cost matrix + - M is the (dim_a, n_b) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are source and target weights (sum to 1) @@ -40,12 +42,12 @@ def sinkhorn(a, b, M, reg, method='sinkhorn', numItermax=1000, Parameters ---------- - a : ndarray, shape (ns,) + a : ndarray, shape (dim_a,) samples weights in the source domain - b : ndarray, shape (nt,) or ndarray, shape (nt, nbb) + b : ndarray, shape (dim_b,) or ndarray, shape (dim_b, n_hists) samples in the target domain, compute sinkhorn with multiple targets and fixed M if b is a matrix (return OT loss + dual variables in log) - M : ndarray, shape (ns, nt) + M : ndarray, shape (dim_a, n_b) loss matrix reg : float Regularization term >0 @@ -64,7 +66,7 @@ def sinkhorn(a, b, M, reg, method='sinkhorn', numItermax=1000, Returns ------- - gamma : ndarray, shape (ns, nt) + gamma : ndarray, shape (dim_a, n_b) Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters @@ -103,30 +105,23 @@ def sinkhorn(a, b, M, reg, method='sinkhorn', numItermax=1000, """ if method.lower() == 'sinkhorn': - def sink(): - return sinkhorn_knopp(a, b, M, reg, numItermax=numItermax, - stopThr=stopThr, verbose=verbose, log=log, **kwargs) + return _sinkhorn_knopp(a, b, M, reg, numItermax=numItermax, + stopThr=stopThr, verbose=verbose, log=log, + **kwargs) elif method.lower() == 'greenkhorn': - def sink(): - return greenkhorn(a, b, M, reg, numItermax=numItermax, - stopThr=stopThr, verbose=verbose, log=log) + return _greenkhorn(a, b, M, reg, numItermax=numItermax, + stopThr=stopThr, verbose=verbose, log=log) elif method.lower() == 'sinkhorn_stabilized': - def sink(): - return sinkhorn_stabilized(a, b, M, reg, numItermax=numItermax, - stopThr=stopThr, verbose=verbose, log=log, **kwargs) + return _sinkhorn_stabilized(a, b, M, reg, numItermax=numItermax, + stopThr=stopThr, verbose=verbose, + log=log, **kwargs) elif method.lower() == 'sinkhorn_epsilon_scaling': - def sink(): - return sinkhorn_epsilon_scaling( - a, b, M, reg, numItermax=numItermax, - stopThr=stopThr, verbose=verbose, log=log, **kwargs) + return _sinkhorn_epsilon_scaling(a, b, M, reg, + numItermax=numItermax, + stopThr=stopThr, verbose=verbose, + log=log, **kwargs) else: - print('Warning : unknown method using classic Sinkhorn Knopp') - - def sink(): - return sinkhorn_knopp(a, b, M, reg, numItermax=numItermax, - stopThr=stopThr, verbose=verbose, log=log, **kwargs) - - return sink() + raise ValueError("Unknown method '%s'." % method) def sinkhorn2(a, b, M, reg, method='sinkhorn', numItermax=1000, @@ -146,7 +141,7 @@ def sinkhorn2(a, b, M, reg, method='sinkhorn', numItermax=1000, \gamma\geq 0 where : - - M is the (ns,nt) metric cost matrix + - M is the (dim_a, n_b) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are source and target weights (sum to 1) @@ -155,12 +150,12 @@ def sinkhorn2(a, b, M, reg, method='sinkhorn', numItermax=1000, Parameters ---------- - a : ndarray, shape (ns,) + a : ndarray, shape (dim_a,) samples weights in the source domain - b : ndarray, shape (nt,) or ndarray, shape (nt, nbb) + b : ndarray, shape (dim_b,) or ndarray, shape (dim_b, n_hists) samples in the target domain, compute sinkhorn with multiple targets and fixed M if b is a matrix (return OT loss + dual variables in log) - M : ndarray, shape (ns, nt) + M : ndarray, shape (dim_a, n_b) loss matrix reg : float Regularization term >0 @@ -218,35 +213,25 @@ def sinkhorn2(a, b, M, reg, method='sinkhorn', numItermax=1000, ot.bregman.sinkhorn_epsilon_scaling: Sinkhorn with epslilon scaling [9][10] """ - + b = np.asarray(b, dtype=np.float64) + if len(b.shape) < 2: + b = b[:, None] if method.lower() == 'sinkhorn': - def sink(): - return sinkhorn_knopp(a, b, M, reg, numItermax=numItermax, - stopThr=stopThr, verbose=verbose, log=log, **kwargs) + return _sinkhorn_knopp(a, b, M, reg, numItermax=numItermax, + stopThr=stopThr, verbose=verbose, log=log, **kwargs) elif method.lower() == 'sinkhorn_stabilized': - def sink(): - return sinkhorn_stabilized(a, b, M, reg, numItermax=numItermax, - stopThr=stopThr, verbose=verbose, log=log, **kwargs) + return _sinkhorn_stabilized(a, b, M, reg, numItermax=numItermax, + stopThr=stopThr, verbose=verbose, log=log, **kwargs) elif method.lower() == 'sinkhorn_epsilon_scaling': - def sink(): - return sinkhorn_epsilon_scaling( - a, b, M, reg, numItermax=numItermax, - stopThr=stopThr, verbose=verbose, log=log, **kwargs) + return _sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=numItermax, + stopThr=stopThr, verbose=verbose, + log=log, **kwargs) else: - print('Warning : unknown method using classic Sinkhorn Knopp') - - def sink(): - return sinkhorn_knopp(a, b, M, reg, **kwargs) + raise ValueError("Unknown method '%s'." % method) - b = np.asarray(b, dtype=np.float64) - if len(b.shape) < 2: - b = b[:, None] - return sink() - - -def sinkhorn_knopp(a, b, M, reg, numItermax=1000, - stopThr=1e-9, verbose=False, log=False, **kwargs): +def _sinkhorn_knopp(a, b, M, reg, numItermax=1000, + stopThr=1e-9, verbose=False, log=False, **kwargs): r""" Solve the entropic regularization optimal transport problem and return the OT matrix @@ -262,7 +247,7 @@ def sinkhorn_knopp(a, b, M, reg, numItermax=1000, \gamma\geq 0 where : - - M is the (ns,nt) metric cost matrix + - M is the (dim_a, n_b) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are source and target weights (sum to 1) @@ -271,12 +256,12 @@ def sinkhorn_knopp(a, b, M, reg, numItermax=1000, Parameters ---------- - a : ndarray, shape (ns,) + a : ndarray, shape (dim_a,) samples weights in the source domain - b : ndarray, shape (nt,) or ndarray, shape (nt, nbb) + b : ndarray, shape (dim_b,) or ndarray, shape (dim_b, n_hists) samples in the target domain, compute sinkhorn with multiple targets and fixed M if b is a matrix (return OT loss + dual variables in log) - M : ndarray, shape (ns, nt) + M : ndarray, shape (dim_a, n_b) loss matrix reg : float Regularization term >0 @@ -291,7 +276,7 @@ def sinkhorn_knopp(a, b, M, reg, numItermax=1000, Returns ------- - gamma : ndarray, shape (ns, nt) + gamma : ndarray, shape (dim_a, n_b) Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters @@ -331,25 +316,25 @@ def sinkhorn_knopp(a, b, M, reg, numItermax=1000, b = np.ones((M.shape[1],), dtype=np.float64) / M.shape[1] # init data - Nini = len(a) - Nfin = len(b) + dim_a = len(a) + dim_b = len(b) if len(b.shape) > 1: - nbb = b.shape[1] + n_hists = b.shape[1] else: - nbb = 0 + n_hists = 0 if log: log = {'err': []} # we assume that no distances are null except those of the diagonal of # distances - if nbb: - u = np.ones((Nini, nbb)) / Nini - v = np.ones((Nfin, nbb)) / Nfin + if n_hists: + u = np.ones((dim_a, n_hists)) / dim_a + v = np.ones((dim_b, n_hists)) / dim_b else: - u = np.ones(Nini) / Nini - v = np.ones(Nfin) / Nfin + u = np.ones(dim_a) / dim_a + v = np.ones(dim_b) / dim_b # print(reg) @@ -384,13 +369,12 @@ def sinkhorn_knopp(a, b, M, reg, numItermax=1000, if cpt % 10 == 0: # we can speed up the process by checking for the error only all # the 10th iterations - if nbb: - err = np.sum((u - uprev)**2) / np.sum((u)**2) + \ - np.sum((v - vprev)**2) / np.sum((v)**2) + if n_hists: + np.einsum('ik,ij,jk->jk', u, K, v, out=tmp2) else: # compute right marginal tmp2= (diag(u)Kdiag(v))^T1 np.einsum('i,ij,j->j', u, K, v, out=tmp2) - err = np.linalg.norm(tmp2 - b)**2 # violation of marginal + err = np.linalg.norm(tmp2 - b) # violation of marginal if log: log['err'].append(err) @@ -404,7 +388,7 @@ def sinkhorn_knopp(a, b, M, reg, numItermax=1000, log['u'] = u log['v'] = v - if nbb: # return only loss + if n_hists: # return only loss res = np.einsum('ik,ij,jk,ij->k', u, K, v, M) if log: return res, log @@ -419,7 +403,7 @@ def sinkhorn_knopp(a, b, M, reg, numItermax=1000, return u.reshape((-1, 1)) * K * v.reshape((1, -1)) -def greenkhorn(a, b, M, reg, numItermax=10000, stopThr=1e-9, verbose=False, log=False): +def _greenkhorn(a, b, M, reg, numItermax=10000, stopThr=1e-9, verbose=False, log=False): r""" Solve the entropic regularization optimal transport problem and return the OT matrix @@ -443,7 +427,7 @@ def greenkhorn(a, b, M, reg, numItermax=10000, stopThr=1e-9, verbose=False, log= \gamma\geq 0 where : - - M is the (ns,nt) metric cost matrix + - M is the (dim_a, n_b) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are source and target weights (sum to 1) @@ -451,12 +435,12 @@ def greenkhorn(a, b, M, reg, numItermax=10000, stopThr=1e-9, verbose=False, log= Parameters ---------- - a : ndarray, shape (ns,) + a : ndarray, shape (dim_a,) samples weights in the source domain - b : ndarray, shape (nt,) or ndarray, shape (nt, nbb) + b : ndarray, shape (dim_b,) or ndarray, shape (dim_b, n_hists) samples in the target domain, compute sinkhorn with multiple targets and fixed M if b is a matrix (return OT loss + dual variables in log) - M : ndarray, shape (ns, nt) + M : ndarray, shape (dim_a, n_b) loss matrix reg : float Regularization term >0 @@ -469,7 +453,7 @@ def greenkhorn(a, b, M, reg, numItermax=10000, stopThr=1e-9, verbose=False, log= Returns ------- - gamma : ndarray, shape (ns, nt) + gamma : ndarray, shape (dim_a, n_b) Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters @@ -481,7 +465,7 @@ def greenkhorn(a, b, M, reg, numItermax=10000, stopThr=1e-9, verbose=False, log= >>> a=[.5, .5] >>> b=[.5, .5] >>> M=[[0., 1.], [1., 0.]] - >>> ot.bregman.greenkhorn(a, b, M, 1) + >>> ot.bregman._greenkhorn(a, b, M, 1) array([[0.36552929, 0.13447071], [0.13447071, 0.36552929]]) @@ -509,16 +493,16 @@ def greenkhorn(a, b, M, reg, numItermax=10000, stopThr=1e-9, verbose=False, log= if len(b) == 0: b = np.ones((M.shape[1],), dtype=np.float64) / M.shape[1] - n = a.shape[0] - m = b.shape[0] + dim_a = a.shape[0] + dim_b = b.shape[0] # Next 3 lines equivalent to K= np.exp(-M/reg), but faster to compute K = np.empty_like(M) np.divide(M, -reg, out=K) np.exp(K, out=K) - u = np.full(n, 1. / n) - v = np.full(m, 1. / m) + u = np.full(dim_a, 1. / dim_a) + v = np.full(dim_b, 1. / dim_b) G = u[:, np.newaxis] * K * v[np.newaxis, :] viol = G.sum(1) - a @@ -571,8 +555,9 @@ def greenkhorn(a, b, M, reg, numItermax=10000, stopThr=1e-9, verbose=False, log= return G -def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9, - warmstart=None, verbose=False, print_period=20, log=False, **kwargs): +def _sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9, + warmstart=None, verbose=False, print_period=20, + log=False, **kwargs): r""" Solve the entropic regularization OT problem with log stabilization @@ -588,7 +573,7 @@ def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9, \gamma\geq 0 where : - - M is the (ns,nt) metric cost matrix + - M is the (dim_a, n_b) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are source and target weights (sum to 1) @@ -599,11 +584,11 @@ def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9, Parameters ---------- - a : ndarray, shape (ns,) + a : ndarray, shape (dim_a,) samples weights in the source domain - b : ndarray, shape (nt,) + b : ndarray, shape (dim_b,) samples in the target domain - M : ndarray, shape (ns, nt) + M : ndarray, shape (dim_a, n_b) loss matrix reg : float Regularization term >0 @@ -622,7 +607,7 @@ def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9, Returns ------- - gamma : ndarray, shape (ns, nt) + gamma : ndarray, shape (dim_a, n_b) Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters @@ -634,7 +619,7 @@ def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9, >>> a=[.5,.5] >>> b=[.5,.5] >>> M=[[0.,1.],[1.,0.]] - >>> ot.bregman.sinkhorn_stabilized(a,b,M,1) + >>> ot.bregman._sinkhorn_stabilized(a, b, M, 1) array([[0.36552929, 0.13447071], [0.13447071, 0.36552929]]) @@ -667,10 +652,10 @@ def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9, # test if multiple target if len(b.shape) > 1: - nbb = b.shape[1] + n_hists = b.shape[1] a = a[:, np.newaxis] else: - nbb = 0 + n_hists = 0 # init data na = len(a) @@ -687,8 +672,8 @@ def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9, else: alpha, beta = warmstart - if nbb: - u, v = np.ones((na, nbb)) / na, np.ones((nb, nbb)) / nb + if n_hists: + u, v = np.ones((na, n_hists)) / na, np.ones((nb, n_hists)) / nb else: u, v = np.ones(na) / na, np.ones(nb) / nb @@ -720,13 +705,13 @@ def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9, # remove numerical problems and store them in K if np.abs(u).max() > tau or np.abs(v).max() > tau: - if nbb: + if n_hists: alpha, beta = alpha + reg * \ np.max(np.log(u), 1), beta + reg * np.max(np.log(v)) else: alpha, beta = alpha + reg * np.log(u), beta + reg * np.log(v) - if nbb: - u, v = np.ones((na, nbb)) / na, np.ones((nb, nbb)) / nb + if n_hists: + u, v = np.ones((na, n_hists)) / na, np.ones((nb, n_hists)) / nb else: u, v = np.ones(na) / na, np.ones(nb) / nb K = get_K(alpha, beta) @@ -734,12 +719,15 @@ def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9, if cpt % print_period == 0: # we can speed up the process by checking for the error only all # the 10th iterations - if nbb: - err = np.sum((u - uprev)**2) / np.sum((u)**2) + \ - np.sum((v - vprev)**2) / np.sum((v)**2) + if n_hists: + err_u = abs(u - uprev).max() + err_u /= max(abs(u).max(), abs(uprev).max(), 1.) + err_v = abs(v - vprev).max() + err_v /= max(abs(v).max(), abs(vprev).max(), 1.) + err = 0.5 * (err_u + err_v) else: transp = get_Gamma(alpha, beta, u, v) - err = np.linalg.norm((np.sum(transp, axis=0) - b))**2 + err = np.linalg.norm((np.sum(transp, axis=0) - b)) if log: log['err'].append(err) @@ -766,7 +754,7 @@ def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9, cpt = cpt + 1 if log: - if nbb: + if n_hists: alpha = alpha[:, None] beta = beta[:, None] logu = alpha / reg + np.log(u) @@ -776,26 +764,28 @@ def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9, log['alpha'] = alpha + reg * np.log(u) log['beta'] = beta + reg * np.log(v) log['warmstart'] = (log['alpha'], log['beta']) - if nbb: - res = np.zeros((nbb)) - for i in range(nbb): + if n_hists: + res = np.zeros((n_hists)) + for i in range(n_hists): res[i] = np.sum(get_Gamma(alpha, beta, u[:, i], v[:, i]) * M) return res, log else: return get_Gamma(alpha, beta, u, v), log else: - if nbb: - res = np.zeros((nbb)) - for i in range(nbb): + if n_hists: + res = np.zeros((n_hists)) + for i in range(n_hists): res[i] = np.sum(get_Gamma(alpha, beta, u[:, i], v[:, i]) * M) return res else: return get_Gamma(alpha, beta, u, v) -def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4, numInnerItermax=100, - tau=1e3, stopThr=1e-9, warmstart=None, verbose=False, print_period=10, log=False, **kwargs): +def _sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4, + numInnerItermax=100, tau=1e3, stopThr=1e-9, + warmstart=None, verbose=False, print_period=10, + log=False, **kwargs): r""" Solve the entropic regularization optimal transport problem with log stabilization and epsilon scaling. @@ -812,7 +802,7 @@ def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4, numInne \gamma\geq 0 where : - - M is the (ns,nt) metric cost matrix + - M is the (dim_a, n_b) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are source and target weights (sum to 1) @@ -823,18 +813,16 @@ def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4, numInne Parameters ---------- - a : ndarray, shape (ns,) + a : ndarray, shape (dim_a,) samples weights in the source domain - b : ndarray, shape (nt,) + b : ndarray, shape (dim_b,) samples in the target domain - M : ndarray, shape (ns, nt) + M : ndarray, shape (dim_a, n_b) loss matrix reg : float Regularization term >0 tau : float thershold for max value in u or v for log scaling - tau : float - thershold for max value in u or v for log scaling warmstart : tuple of vectors if given then sarting values for alpha an beta log scalings numItermax : int, optional @@ -852,7 +840,7 @@ def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4, numInne Returns ------- - gamma : ndarray, shape (ns, nt) + gamma : ndarray, shape (dim_a, n_b) Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters @@ -864,7 +852,7 @@ def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4, numInne >>> a=[.5, .5] >>> b=[.5, .5] >>> M=[[0., 1.], [1., 0.]] - >>> ot.bregman.sinkhorn_epsilon_scaling(a, b, M, 1) + >>> ot.bregman._sinkhorn_epsilon_scaling(a, b, M, 1) array([[0.36552929, 0.13447071], [0.13447071, 0.36552929]]) @@ -893,8 +881,8 @@ def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4, numInne b = np.ones((M.shape[1],), dtype=np.float64) / M.shape[1] # init data - na = len(a) - nb = len(b) + dim_a = len(a) + dim_b = len(b) # nrelative umerical precision with 64 bits numItermin = 35 @@ -907,14 +895,14 @@ def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4, numInne # we assume that no distances are null except those of the diagonal of # distances if warmstart is None: - alpha, beta = np.zeros(na), np.zeros(nb) + alpha, beta = np.zeros(dim_a), np.zeros(dim_b) else: alpha, beta = warmstart def get_K(alpha, beta): """log space computation""" - return np.exp(-(M - alpha.reshape((na, 1)) - - beta.reshape((1, nb))) / reg) + return np.exp(-(M - alpha.reshape((dim_a, 1)) + - beta.reshape((1, dim_b))) / reg) # print(np.min(K)) def get_reg(n): # exponential decreasing @@ -927,7 +915,7 @@ def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4, numInne regi = get_reg(cpt) - G, logi = sinkhorn_stabilized(a, b, M, regi, numItermax=numInnerItermax, stopThr=1e-9, warmstart=( + G, logi = _sinkhorn_stabilized(a, b, M, regi, numItermax=numInnerItermax, stopThr=1e-9, warmstart=( alpha, beta), verbose=False, print_period=20, tau=tau, log=True) alpha = logi['alpha'] @@ -986,8 +974,8 @@ def projC(gamma, q): return np.multiply(gamma, q / np.maximum(np.sum(gamma, axis=0), 1e-10)) -def barycenter(A, M, reg, weights=None, numItermax=1000, - stopThr=1e-4, verbose=False, log=False): +def barycenter(A, M, reg, weights=None, method="sinkhorn", numItermax=10000, + stopThr=1e-4, verbose=False, log=False, **kwargs): r"""Compute the entropic regularized wasserstein barycenter of distributions A The function solves the following optimization problem: @@ -1005,13 +993,15 @@ def barycenter(A, M, reg, weights=None, numItermax=1000, Parameters ---------- - A : ndarray, shape (d,n) - n training distributions a_i of size d - M : ndarray, shape (d,d) - loss matrix for OT + A : ndarray, shape (dim, n_hists) + n_hists training distributions a_i of size dim + M : ndarray, shape (dim, dim) + loss matrix for OT reg : float - Regularization term >0 - weights : ndarray, shape (n,) + Regularization term > 0 + method : str (optional) + method used for the solver either 'sinkhorn' or 'sinkhorn_stabilized' + weights : ndarray, shape (n_hists,) Weights of each histogram a_i on the simplex (barycentric coodinates) numItermax : int, optional Max number of iterations @@ -1025,7 +1015,7 @@ def barycenter(A, M, reg, weights=None, numItermax=1000, Returns ------- - a : (d,) ndarray + a : (dim,) ndarray Wasserstein barycenter log : dict log dictionary return only if log==True in parameters @@ -1036,8 +1026,70 @@ def barycenter(A, M, reg, weights=None, numItermax=1000, .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138. + """ + + if method.lower() == 'sinkhorn': + return _barycenter(A, M, reg, numItermax=numItermax, + stopThr=stopThr, verbose=verbose, log=log, + **kwargs) + elif method.lower() == 'sinkhorn_stabilized': + return _barycenter_stabilized(A, M, reg, numItermax=numItermax, + stopThr=stopThr, verbose=verbose, + log=log, **kwargs) + else: + raise ValueError("Unknown method '%s'." % method) + + +def _barycenter(A, M, reg, weights=None, numItermax=1000, + stopThr=1e-4, verbose=False, log=False): + r"""Compute the entropic regularized wasserstein barycenter of distributions A + + The function solves the following optimization problem: + + .. math:: + \mathbf{a} = arg\min_\mathbf{a} \sum_i W_{reg}(\mathbf{a},\mathbf{a}_i) + + where : + + - :math:`W_{reg}(\cdot,\cdot)` is the entropic regularized Wasserstein distance (see ot.bregman.sinkhorn) + - :math:`\mathbf{a}_i` are training distributions in the columns of matrix :math:`\mathbf{A}` + - reg and :math:`\mathbf{M}` are respectively the regularization term and the cost matrix for OT + + The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [3]_ + + Parameters + ---------- + A : ndarray, shape (dim, n_hists) + n_hists training distributions a_i of size dim + M : ndarray, shape (dim, dim) + loss matrix for OT + reg : float + Regularization term > 0 + weights : ndarray, shape (n_hists,) + Weights of each histogram a_i on the simplex (barycentric coodinates) + numItermax : int, optional + Max number of iterations + stopThr : float, optional + Stop threshol on error (>0) + verbose : bool, optional + Print information along iterations + log : bool, optional + record log if True + Returns + ------- + a : (dim,) ndarray + Wasserstein barycenter + log : dict + log dictionary return only if log==True in parameters + + + References + ---------- + + .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138. + """ if weights is None: @@ -1082,6 +1134,136 @@ def barycenter(A, M, reg, weights=None, numItermax=1000, return geometricBar(weights, UKv) +def _barycenter_stabilized(A, M, reg, tau=1e10, weights=None, numItermax=1000, + stopThr=1e-4, verbose=False, log=False): + r"""Compute the entropic regularized wasserstein barycenter of distributions A + with stabilization. + + The function solves the following optimization problem: + + .. math:: + \mathbf{a} = arg\min_\mathbf{a} \sum_i W_{reg}(\mathbf{a},\mathbf{a}_i) + + where : + + - :math:`W_{reg}(\cdot,\cdot)` is the entropic regularized Wasserstein distance (see ot.bregman.sinkhorn) + - :math:`\mathbf{a}_i` are training distributions in the columns of matrix :math:`\mathbf{A}` + - reg and :math:`\mathbf{M}` are respectively the regularization term and the cost matrix for OT + + The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [3]_ + + Parameters + ---------- + A : ndarray, shape (dim, n_hists) + n_hists training distributions a_i of size dim + M : ndarray, shape (dim, dim) + loss matrix for OT + reg : float + Regularization term > 0 + tau : float + thershold for max value in u or v for log scaling + weights : ndarray, shape (n_hists,) + Weights of each histogram a_i on the simplex (barycentric coodinates) + numItermax : int, optional + Max number of iterations + stopThr : float, optional + Stop threshol on error (>0) + verbose : bool, optional + Print information along iterations + log : bool, optional + record log if True + + + Returns + ------- + a : (dim,) ndarray + Wasserstein barycenter + log : dict + log dictionary return only if log==True in parameters + + + References + ---------- + + .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138. + + """ + + dim, n_hists = A.shape + if weights is None: + weights = np.ones(n_hists) / n_hists + else: + assert(len(weights) == A.shape[1]) + + if log: + log = {'err': []} + + u = np.ones((dim, n_hists)) / dim + v = np.ones((dim, n_hists)) / dim + + # print(reg) + # Next 3 lines equivalent to K= np.exp(-M/reg), but faster to compute + K = np.empty(M.shape, dtype=M.dtype) + np.divide(M, -reg, out=K) + np.exp(K, out=K) + + cpt = 0 + err = 1. + alpha = np.zeros(dim) + beta = np.zeros(dim) + q = np.ones(dim) / dim + while (err > stopThr and cpt < numItermax): + qprev = q + Kv = K.dot(v) + u = A / (Kv + 1e-16) + Ktu = K.T.dot(u) + q = geometricBar(weights, Ktu) + Q = q[:, None] + v = Q / (Ktu + 1e-16) + absorbing = False + if (u > tau).any() or (v > tau).any(): + absorbing = True + print("YEAH absorbing") + alpha = alpha + reg * np.log(np.max(u, 1)) + beta = beta + reg * np.log(np.max(v, 1)) + K = np.exp((alpha[:, None] + beta[None, :] - + M) / reg) + v = np.ones_like(v) + Kv = K.dot(v) + if (np.any(Ktu == 0.) + or np.any(np.isnan(u)) or np.any(np.isnan(v)) + or np.any(np.isinf(u)) or np.any(np.isinf(v))): + # we have reached the machine precision + # come back to previous solution and quit loop + warnings.warn('Numerical errors at iteration %s' % cpt) + q = qprev + break + if (cpt % 10 == 0 and not absorbing) or cpt == 0: + # we can speed up the process by checking for the error only all + # the 10th iterations + err = abs(u * Kv - A).max() + if log: + log['err'].append(err) + if verbose: + if cpt % 50 == 0: + print( + '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19) + print('{:5d}|{:8e}|'.format(cpt, err)) + + cpt += 1 + if err > stopThr: + warnings.warn("Stabilized Unbalanced Sinkhorn did not converge." + + "Try a larger entropy `reg`" + + "Or a larger absorption threshold `tau`.") + if log: + log['niter'] = cpt + log['logu'] = np.log(u + 1e-16) + log['logv'] = np.log(v + 1e-16) + return q, log + else: + return q + + def convolutional_barycenter2d(A, reg, weights=None, numItermax=10000, stopThr=1e-9, stabThr=1e-30, verbose=False, log=False): r"""Compute the entropic regularized wasserstein barycenter of distributions A where A is a collection of 2D images. @@ -1101,16 +1283,16 @@ def convolutional_barycenter2d(A, reg, weights=None, numItermax=10000, stopThr=1 Parameters ---------- - A : ndarray, shape (n, w, h) - n distributions (2D images) of size w x h + A : ndarray, shape (n_hists, width, height) + n distributions (2D images) of size width x height reg : float Regularization term >0 - weights : ndarray, shape (n,) + weights : ndarray, shape (n_hists,) Weights of each image on the simplex (barycentric coodinates) numItermax : int, optional Max number of iterations stopThr : float, optional - Stop threshol on error (>0) + Stop threshol on error (> 0) stabThr : float, optional Stabilization threshold to avoid numerical precision issue verbose : bool, optional @@ -1120,7 +1302,7 @@ def convolutional_barycenter2d(A, reg, weights=None, numItermax=10000, stopThr=1 Returns ------- - a : ndarray, shape (w, h) + a : ndarray, shape (width, height) 2D Wasserstein barycenter log : dict log dictionary return only if log==True in parameters @@ -1214,15 +1396,15 @@ def unmix(a, D, M, M0, h0, reg, reg0, alpha, numItermax=1000, Parameters ---------- - a : ndarray, shape (d) + a : ndarray, shape (n_observed) observed distribution - D : ndarray, shape (d, n) + D : ndarray, shape (dim, dim) dictionary matrix - M : ndarray, shape (d, d) + M : ndarray, shape (dim, dim) loss matrix - M0 : ndarray, shape (n, n) + M0 : ndarray, shape (n_observed, n_observed) loss matrix - h0 : ndarray, shape (n,) + h0 : ndarray, shape (dim,) prior on h reg : float Regularization term >0 (Wasserstein data fitting) @@ -1242,7 +1424,7 @@ def unmix(a, D, M, M0, h0, reg, reg0, alpha, numItermax=1000, Returns ------- - a : ndarray, shape (d,) + a : ndarray, shape (dim,) Wasserstein barycenter log : dict log dictionary return only if log==True in parameters @@ -1315,22 +1497,22 @@ def empirical_sinkhorn(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', numI \gamma\geq 0 where : - - :math:`M` is the (ns,nt) metric cost matrix + - :math:`M` is the (dim_a, n_b) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - :math:`a` and :math:`b` are source and target weights (sum to 1) Parameters ---------- - X_s : ndarray, shape (ns, d) + X_s : ndarray, shape (dim_a, d) samples in the source domain - X_t : ndarray, shape (nt, d) + X_t : ndarray, shape (dim_b, d) samples in the target domain reg : float Regularization term >0 - a : ndarray, shape (ns,) + a : ndarray, shape (dim_a,) samples weights in the source domain - b : ndarray, shape (nt,) + b : ndarray, shape (dim_b,) samples weights in the target domain numItermax : int, optional Max number of iterations @@ -1344,7 +1526,7 @@ def empirical_sinkhorn(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', numI Returns ------- - gamma : ndarray, shape (ns, nt) + gamma : ndarray, shape (dim_a, n_b) Regularized optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters @@ -1352,11 +1534,11 @@ def empirical_sinkhorn(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', numI Examples -------- - >>> n_s = 2 - >>> n_t = 2 + >>> n_a = 2 + >>> n_b = 2 >>> reg = 0.1 - >>> X_s = np.reshape(np.arange(n_s), (n_s, 1)) - >>> X_t = np.reshape(np.arange(0, n_t), (n_t, 1)) + >>> X_s = np.reshape(np.arange(n_a), (dim_a, 1)) + >>> X_t = np.reshape(np.arange(0, n_b), (dim_b, 1)) >>> empirical_sinkhorn(X_s, X_t, reg, verbose=False) # doctest: +NORMALIZE_WHITESPACE array([[4.99977301e-01, 2.26989344e-05], [2.26989344e-05, 4.99977301e-01]]) @@ -1405,22 +1587,22 @@ def empirical_sinkhorn2(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', num \gamma\geq 0 where : - - :math:`M` is the (ns,nt) metric cost matrix + - :math:`M` is the (dim_a, n_b) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - :math:`a` and :math:`b` are source and target weights (sum to 1) Parameters ---------- - X_s : ndarray, shape (ns, d) + X_s : ndarray, shape (n_samples_a, dim) samples in the source domain - X_t : ndarray, shape (nt, d) + X_t : ndarray, shape (n_samples_b, d) samples in the target domain reg : float Regularization term >0 - a : ndarray, shape (ns,) + a : ndarray, shape (n_samples_a,) samples weights in the source domain - b : ndarray, shape (nt,) + b : ndarray, shape (n_samples_b,) samples weights in the target domain numItermax : int, optional Max number of iterations @@ -1434,7 +1616,7 @@ def empirical_sinkhorn2(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', num Returns ------- - gamma : ndarray, shape (ns, nt) + gamma : ndarray, shape (n_samples_a, n_samples_b) Regularized optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters @@ -1442,11 +1624,11 @@ def empirical_sinkhorn2(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', num Examples -------- - >>> n_s = 2 - >>> n_t = 2 + >>> n_a = 2 + >>> n_b = 2 >>> reg = 0.1 - >>> X_s = np.reshape(np.arange(n_s), (n_s, 1)) - >>> X_t = np.reshape(np.arange(0, n_t), (n_t, 1)) + >>> X_s = np.reshape(np.arange(n_samples_a), (n_samples_a, 1)) + >>> X_t = np.reshape(np.arange(0, n_samples_b), (n_samples_b, 1)) >>> empirical_sinkhorn2(X_s, X_t, reg, verbose=False) array([4.53978687e-05]) @@ -1513,22 +1695,22 @@ def empirical_sinkhorn_divergence(X_s, X_t, reg, a=None, b=None, metric='sqeucli \gamma_b\geq 0 where : - - :math:`M` (resp. :math:`M_a, M_b`) is the (ns,nt) metric cost matrix (resp (ns, ns) and (nt, nt)) + - :math:`M` (resp. :math:`M_a, M_b`) is the (dim_a, n_b) metric cost matrix (resp (dim_a, ns) and (dim_b, nt)) - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - :math:`a` and :math:`b` are source and target weights (sum to 1) Parameters ---------- - X_s : ndarray, shape (ns, d) + X_s : ndarray, shape (n_samples_a, dim) samples in the source domain - X_t : ndarray, shape (nt, d) + X_t : ndarray, shape (n_samples_b, dim) samples in the target domain reg : float Regularization term >0 - a : ndarray, shape (ns,) + a : ndarray, shape (n_samples_a,) samples weights in the source domain - b : ndarray, shape (nt,) + b : ndarray, shape (n_samples_b,) samples weights in the target domain numItermax : int, optional Max number of iterations @@ -1541,18 +1723,18 @@ def empirical_sinkhorn_divergence(X_s, X_t, reg, a=None, b=None, metric='sqeucli Returns ------- - gamma : ndarray, shape (ns, nt) + gamma : ndarray, shape (n_samples_a, n_samples_b) Regularized optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters Examples -------- - >>> n_s = 2 - >>> n_t = 4 + >>> n_a = 2 + >>> n_b = 4 >>> reg = 0.1 - >>> X_s = np.reshape(np.arange(n_s), (n_s, 1)) - >>> X_t = np.reshape(np.arange(0, n_t), (n_t, 1)) + >>> X_s = np.reshape(np.arange(n_samples_a), (n_samples_a, 1)) + >>> X_t = np.reshape(np.arange(0, n_samples_b), (n_samples_b, 1)) >>> empirical_sinkhorn_divergence(X_s, X_t, reg) # doctest: +ELLIPSIS array([1.499...]) diff --git a/ot/unbalanced.py b/ot/unbalanced.py index 0f0692e..3f71d28 100644 --- a/ot/unbalanced.py +++ b/ot/unbalanced.py @@ -9,51 +9,56 @@ Regularized Unbalanced OT from __future__ import division import warnings import numpy as np +from scipy.special import logsumexp + # from .utils import unif, dist -def sinkhorn_unbalanced(a, b, M, reg, alpha, method='sinkhorn', numItermax=1000, - stopThr=1e-9, verbose=False, log=False, **kwargs): +def sinkhorn_unbalanced(a, b, M, reg, reg_m, method='sinkhorn', numItermax=1000, + stopThr=1e-6, verbose=False, log=False, **kwargs): r""" - Solve the unbalanced entropic regularization optimal transport problem and return the loss + Solve the unbalanced entropic regularization optimal transport problem + and return the OT plan The function solves the following optimization problem: .. math:: - W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \\alpha KL(\gamma 1, a) + \\alpha KL(\gamma^T 1, b) + W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + reg_m KL(\gamma 1, a) + reg_m KL(\gamma^T 1, b) s.t. \gamma\geq 0 where : - - M is the (ns, nt) metric cost matrix - - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - - a and b are source and target weights + - M is the (dim_a, dim_b) metric cost matrix + - :math:`\Omega` is the entropic regularization + term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` + - a and b are source and target unbalanced distributions - KL is the Kullback-Leibler divergence - The algorithm used for solving the problem is the generalized Sinkhorn-Knopp matrix scaling algorithm as proposed in [10, 23]_ + The algorithm used for solving the problem is the generalized + Sinkhorn-Knopp matrix scaling algorithm as proposed in [10, 23]_ Parameters ---------- - a : np.ndarray (ns,) - samples weights in the source domain - b : np.ndarray (nt,) or np.ndarray (nt,n_hists) - samples in the target domain, compute sinkhorn with multiple targets - and fixed M if b is a matrix (return OT loss + dual variables in log) - M : np.ndarray (ns, nt) + a : np.ndarray (dim_a,) + Unnormalized histogram of dimension dim_a + b : np.ndarray (dim_b,) or np.ndarray (dim_b, n_hists) + One or multiple unnormalized histograms of dimension dim_b + If many, compute all the OT distances (a, b_i) + M : np.ndarray (dim_a, dim_b) loss matrix reg : float Entropy regularization term > 0 - alpha : float + reg_m: float Marginal relaxation term > 0 method : str method used for the solver either 'sinkhorn', 'sinkhorn_stabilized' or - 'sinkhorn_epsilon_scaling', see those function for specific parameters + 'sinkhorn_reg_scaling', see those function for specific parameters numItermax : int, optional Max number of iterations stopThr : float, optional - Stop threshol on error (> 0) + Stop threshol on error (>0) verbose : bool, optional Print information along iterations log : bool, optional @@ -62,10 +67,16 @@ def sinkhorn_unbalanced(a, b, M, reg, alpha, method='sinkhorn', numItermax=1000, Returns ------- - W : (nt) ndarray or float - Optimal transportation matrix for the given parameters - log : dict - log dictionary return only if log==True in parameters + if n_hists == 1: + gamma : (dim_a x dim_b) ndarray + Optimal transportation matrix for the given parameters + log : dict + log dictionary returned only if `log` is `True` + else: + ot_distance : (n_hists,) ndarray + the OT distance between `a` and each of the histograms `b_i` + log : dict + log dictionary returned only if `log` is `True` Examples -------- @@ -82,83 +93,96 @@ def sinkhorn_unbalanced(a, b, M, reg, alpha, method='sinkhorn', numItermax=1000, References ---------- - .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013 + .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal + Transport, Advances in Neural Information Processing Systems + (NIPS) 26, 2013 - .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519. + .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for + Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519. - .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816. + .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). + Scaling algorithms for unbalanced transport problems. arXiv preprint + arXiv:1607.05816. - .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : Learning with a Wasserstein Loss, Advances in Neural Information Processing Systems (NIPS) 2015 + .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : + Learning with a Wasserstein Loss, Advances in Neural Information + Processing Systems (NIPS) 2015 See Also -------- ot.unbalanced.sinkhorn_knopp_unbalanced : Unbalanced Classic Sinkhorn [10] - ot.unbalanced.sinkhorn_stabilized_unbalanced: Unbalanced Stabilized sinkhorn [9][10] - ot.unbalanced.sinkhorn_epsilon_scaling_unbalanced: Unbalanced Sinkhorn with epslilon scaling [9][10] + ot.unbalanced.sinkhorn_stabilized_unbalanced: + Unbalanced Stabilized sinkhorn [9][10] + ot.unbalanced.sinkhorn_reg_scaling_unbalanced: + Unbalanced Sinkhorn with epslilon scaling [9][10] """ if method.lower() == 'sinkhorn': - def sink(): - return sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, - numItermax=numItermax, - stopThr=stopThr, verbose=verbose, - log=log, **kwargs) - - elif method.lower() in ['sinkhorn_stabilized', 'sinkhorn_epsilon_scaling']: + return _sinkhorn_knopp_unbalanced(a, b, M, reg, reg_m, + numItermax=numItermax, + stopThr=stopThr, verbose=verbose, + log=log, **kwargs) + + elif method.lower() == 'sinkhorn_stabilized': + return _sinkhorn_stabilized_unbalanced(a, b, M, reg, reg_m, + numItermax=numItermax, + stopThr=stopThr, + verbose=verbose, + log=log, **kwargs) + elif method.lower() in ['sinkhorn_reg_scaling']: warnings.warn('Method not implemented yet. Using classic Sinkhorn Knopp') - - def sink(): - return sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, - numItermax=numItermax, - stopThr=stopThr, verbose=verbose, - log=log, **kwargs) + return _sinkhorn_knopp_unbalanced(a, b, M, reg, reg_m, + numItermax=numItermax, + stopThr=stopThr, verbose=verbose, + log=log, **kwargs) else: - raise ValueError('Unknown method. Using classic Sinkhorn Knopp') - - return sink() + raise ValueError("Unknown method '%s'." % method) -def sinkhorn_unbalanced2(a, b, M, reg, alpha, method='sinkhorn', - numItermax=1000, stopThr=1e-9, verbose=False, +def sinkhorn_unbalanced2(a, b, M, reg, reg_m, method='sinkhorn', + numItermax=1000, stopThr=1e-6, verbose=False, log=False, **kwargs): r""" - Solve the entropic regularization unbalanced optimal transport problem and return the loss + Solve the entropic regularization unbalanced optimal transport problem and + return the loss The function solves the following optimization problem: .. math:: - W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \\alpha KL(\gamma 1, a) + \\alpha KL(\gamma^T 1, b) + W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + reg_m KL(\gamma 1, a) + reg_m KL(\gamma^T 1, b) s.t. \gamma\geq 0 where : - - M is the (ns, nt) metric cost matrix - - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - - a and b are source and target weights + - M is the (dim_a, dim_b) metric cost matrix + - :math:`\Omega` is the entropic regularization term + :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` + - a and b are source and target unbalanced distributions - KL is the Kullback-Leibler divergence - The algorithm used for solving the problem is the generalized Sinkhorn-Knopp matrix scaling algorithm as proposed in [10, 23]_ + The algorithm used for solving the problem is the generalized + Sinkhorn-Knopp matrix scaling algorithm as proposed in [10, 23]_ Parameters ---------- - a : np.ndarray (ns,) - samples weights in the source domain - b : np.ndarray (nt,) or np.ndarray (nt, n_hists) - samples in the target domain, compute sinkhorn with multiple targets - and fixed M if b is a matrix (return OT loss + dual variables in log) - M : np.ndarray (ns,nt) + a : np.ndarray (dim_a,) + Unnormalized histogram of dimension dim_a + b : np.ndarray (dim_b,) or np.ndarray (dim_b, n_hists) + One or multiple unnormalized histograms of dimension dim_b + If many, compute all the OT distances (a, b_i) + M : np.ndarray (dim_a, dim_b) loss matrix reg : float Entropy regularization term > 0 - alpha : float + reg_m: float Marginal relaxation term > 0 method : str method used for the solver either 'sinkhorn', 'sinkhorn_stabilized' or - 'sinkhorn_epsilon_scaling', see those function for specific parameters + 'sinkhorn_reg_scaling', see those function for specific parameters numItermax : int, optional Max number of iterations stopThr : float, optional @@ -171,10 +195,10 @@ def sinkhorn_unbalanced2(a, b, M, reg, alpha, method='sinkhorn', Returns ------- - W : (nt) ndarray or float - Optimal transportation matrix for the given parameters + ot_distance : (n_hists,) ndarray + the OT distance between `a` and each of the histograms `b_i` log : dict - log dictionary return only if log==True in parameters + log dictionary returned only if `log` is `True` Examples -------- @@ -191,64 +215,70 @@ def sinkhorn_unbalanced2(a, b, M, reg, alpha, method='sinkhorn', References ---------- - .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013 + .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal + Transport, Advances in Neural Information Processing Systems + (NIPS) 26, 2013 - .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519. + .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for + Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519. - .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816. + .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). + Scaling algorithms for unbalanced transport problems. arXiv preprint + arXiv:1607.05816. - .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : Learning with a Wasserstein Loss, Advances in Neural Information Processing Systems (NIPS) 2015 + .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : + Learning with a Wasserstein Loss, Advances in Neural Information + Processing Systems (NIPS) 2015 See Also -------- ot.unbalanced.sinkhorn_knopp : Unbalanced Classic Sinkhorn [10] ot.unbalanced.sinkhorn_stabilized: Unbalanced Stabilized sinkhorn [9][10] - ot.unbalanced.sinkhorn_epsilon_scaling: Unbalanced Sinkhorn with epslilon scaling [9][10] + ot.unbalanced.sinkhorn_reg_scaling: Unbalanced Sinkhorn with epslilon scaling [9][10] """ - - if method.lower() == 'sinkhorn': - def sink(): - return sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, - numItermax=numItermax, - stopThr=stopThr, verbose=verbose, - log=log, **kwargs) - - elif method.lower() in ['sinkhorn_stabilized', 'sinkhorn_epsilon_scaling']: - warnings.warn('Method not implemented yet. Using classic Sinkhorn Knopp') - - def sink(): - return sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, - numItermax=numItermax, - stopThr=stopThr, verbose=verbose, - log=log, **kwargs) - else: - raise ValueError('Unknown method. Using classic Sinkhorn Knopp') - b = np.asarray(b, dtype=np.float64) if len(b.shape) < 2: b = b[:, None] - - return sink() + if method.lower() == 'sinkhorn': + return _sinkhorn_knopp_unbalanced(a, b, M, reg, reg_m, + numItermax=numItermax, + stopThr=stopThr, verbose=verbose, + log=log, **kwargs) + + elif method.lower() == 'sinkhorn_stabilized': + return _sinkhorn_stabilized_unbalanced(a, b, M, reg, reg_m, + numItermax=numItermax, + stopThr=stopThr, + verbose=verbose, + log=log, **kwargs) + elif method.lower() in ['sinkhorn_reg_scaling']: + warnings.warn('Method not implemented yet. Using classic Sinkhorn Knopp') + return _sinkhorn_knopp_unbalanced(a, b, M, reg, reg_m, + numItermax=numItermax, + stopThr=stopThr, verbose=verbose, + log=log, **kwargs) + else: + raise ValueError('Unknown method %s.' % method) -def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000, - stopThr=1e-9, verbose=False, log=False, **kwargs): +def _sinkhorn_knopp_unbalanced(a, b, M, reg, reg_m, numItermax=1000, + stopThr=1e-6, verbose=False, log=False, **kwargs): r""" Solve the entropic regularization unbalanced optimal transport problem and return the loss The function solves the following optimization problem: .. math:: - W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \\alpha KL(\gamma 1, a) + \\alpha KL(\gamma^T 1, b) + W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + \reg_m KL(\gamma 1, a) + \reg_m KL(\gamma^T 1, b) s.t. \gamma\geq 0 where : - - M is the (ns, nt) metric cost matrix + - M is the (dim_a, dim_b) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - - a and b are source and target weights + - a and b are source and target unbalanced distributions - KL is the Kullback-Leibler divergence The algorithm used for solving the problem is the generalized Sinkhorn-Knopp matrix scaling algorithm as proposed in [10, 23]_ @@ -256,16 +286,16 @@ def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000, Parameters ---------- - a : np.ndarray (ns,) - samples weights in the source domain - b : np.ndarray (nt,) or np.ndarray (nt, n_hists) - samples in the target domain, compute sinkhorn with multiple targets - and fixed M if b is a matrix (return OT loss + dual variables in log) - M : np.ndarray (ns,nt) + a : np.ndarray (dim_a,) + Unnormalized histogram of dimension dim_a + b : np.ndarray (dim_b,) or np.ndarray (dim_b, n_hists) + One or multiple unnormalized histograms of dimension dim_b + If many, compute all the OT distances (a, b_i) + M : np.ndarray (dim_a, dim_b) loss matrix reg : float Entropy regularization term > 0 - alpha : float + reg_m: float Marginal relaxation term > 0 numItermax : int, optional Max number of iterations @@ -279,11 +309,16 @@ def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000, Returns ------- - gamma : (ns x nt) ndarray - Optimal transportation matrix for the given parameters - log : dict - log dictionary return only if log==True in parameters - + if n_hists == 1: + gamma : (dim_a x dim_b) ndarray + Optimal transportation matrix for the given parameters + log : dict + log dictionary returned only if `log` is `True` + else: + ot_distance : (n_hists,) ndarray + the OT distance between `a` and each of the histograms `b_i` + log : dict + log dictionary returned only if `log` is `True` Examples -------- @@ -291,16 +326,20 @@ def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000, >>> a=[.5, .5] >>> b=[.5, .5] >>> M=[[0., 1.],[1., 0.]] - >>> ot.unbalanced.sinkhorn_knopp_unbalanced(a, b, M, 1., 1.) + >>> ot.unbalanced._sinkhorn_knopp_unbalanced(a, b, M, 1., 1.) array([[0.51122823, 0.18807035], [0.18807035, 0.51122823]]) References ---------- - .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816. + .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). + Scaling algorithms for unbalanced transport problems. arXiv preprint + arXiv:1607.05816. - .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : Learning with a Wasserstein Loss, Advances in Neural Information Processing Systems (NIPS) 2015 + .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : + Learning with a Wasserstein Loss, Advances in Neural Information + Processing Systems (NIPS) 2015 See Also -------- @@ -313,12 +352,12 @@ def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000, b = np.asarray(b, dtype=np.float64) M = np.asarray(M, dtype=np.float64) - n_a, n_b = M.shape + dim_a, dim_b = M.shape if len(a) == 0: - a = np.ones(n_a, dtype=np.float64) / n_a + a = np.ones(dim_a, dtype=np.float64) / dim_a if len(b) == 0: - b = np.ones(n_b, dtype=np.float64) / n_b + b = np.ones(dim_b, dtype=np.float64) / dim_b if len(b.shape) > 1: n_hists = b.shape[1] @@ -331,21 +370,19 @@ def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000, # we assume that no distances are null except those of the diagonal of # distances if n_hists: - u = np.ones((n_a, 1)) / n_a - v = np.ones((n_b, n_hists)) / n_b - a = a.reshape(n_a, 1) + u = np.ones((dim_a, 1)) / dim_a + v = np.ones((dim_b, n_hists)) / dim_b + a = a.reshape(dim_a, 1) else: - u = np.ones(n_a) / n_a - v = np.ones(n_b) / n_b + u = np.ones(dim_a) / dim_a + v = np.ones(dim_b) / dim_b - # print(reg) # Next 3 lines equivalent to K= np.exp(-M/reg), but faster to compute K = np.empty(M.shape, dtype=M.dtype) np.divide(M, -reg, out=K) np.exp(K, out=K) - # print(np.min(K)) - fi = alpha / (alpha + reg) + fi = reg_m / (reg_m + reg) cpt = 0 err = 1. @@ -371,8 +408,9 @@ def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000, if cpt % 10 == 0: # we can speed up the process by checking for the error only all # the 10th iterations - err = np.sum((u - uprev)**2) / np.sum((u)**2) + \ - np.sum((v - vprev)**2) / np.sum((v)**2) + err_u = abs(u - uprev).max() / max(abs(u).max(), abs(uprev).max(), 1.) + err_v = abs(v - vprev).max() / max(abs(v).max(), abs(vprev).max(), 1.) + err = 0.5 * (err_u + err_v) if log: log['err'].append(err) if verbose: @@ -383,8 +421,8 @@ def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000, cpt += 1 if log: - log['u'] = u - log['v'] = v + log['logu'] = np.log(u + 1e-16) + log['logv'] = np.log(v + 1e-16) if n_hists: # return only loss res = np.einsum('ik,ij,jk,ij->k', u, K, v, M) @@ -401,9 +439,224 @@ def sinkhorn_knopp_unbalanced(a, b, M, reg, alpha, numItermax=1000, return u[:, None] * K * v[None, :] -def barycenter_unbalanced(A, M, reg, alpha, weights=None, numItermax=1000, - stopThr=1e-4, verbose=False, log=False): - r"""Compute the entropic regularized unbalanced wasserstein barycenter of distributions A +def _sinkhorn_stabilized_unbalanced(a, b, M, reg, reg_m, tau=1e5, numItermax=1000, + stopThr=1e-6, verbose=False, log=False, + **kwargs): + r""" + Solve the entropic regularization unbalanced optimal transport + problem and return the loss + + The function solves the following optimization problem using log-domain + stabilization as proposed in [10]: + + .. math:: + W = \min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) + reg_m KL(\gamma 1, a) + reg_m KL(\gamma^T 1, b) + + s.t. + \gamma\geq 0 + where : + + - M is the (dim_a, dim_b) metric cost matrix + - :math:`\Omega` is the entropic regularization + term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` + - a and b are source and target unbalanced distributions + - KL is the Kullback-Leibler divergence + + The algorithm used for solving the problem is the generalized + Sinkhorn-Knopp matrix scaling algorithm as proposed in [10, 23]_ + + + Parameters + ---------- + a : np.ndarray (dim_a,) + Unnormalized histogram of dimension dim_a + b : np.ndarray (dim_b,) or np.ndarray (dim_b, n_hists) + One or multiple unnormalized histograms of dimension dim_b + If many, compute all the OT distances (a, b_i) + M : np.ndarray (dim_a, dim_b) + loss matrix + reg : float + Entropy regularization term > 0 + reg_m: float + Marginal relaxation term > 0 + tau : float + thershold for max value in u or v for log scaling + numItermax : int, optional + Max number of iterations + stopThr : float, optional + Stop threshol on error (>0) + verbose : bool, optional + Print information along iterations + log : bool, optional + record log if True + + + Returns + ------- + if n_hists == 1: + gamma : (dim_a x dim_b) ndarray + Optimal transportation matrix for the given parameters + log : dict + log dictionary returned only if `log` is `True` + else: + ot_distance : (n_hists,) ndarray + the OT distance between `a` and each of the histograms `b_i` + log : dict + log dictionary returned only if `log` is `True` + Examples + -------- + + >>> import ot + >>> a=[.5, .5] + >>> b=[.5, .5] + >>> M=[[0., 1.],[1., 0.]] + >>> ot.unbalanced._sinkhorn_stabilized_unbalanced(a, b, M, 1., 1.) + array([[0.51122823, 0.18807035], + [0.18807035, 0.51122823]]) + + References + ---------- + + .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). + Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816. + + .. [25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. : + Learning with a Wasserstein Loss, Advances in Neural Information + Processing Systems (NIPS) 2015 + + See Also + -------- + ot.lp.emd : Unregularized OT + ot.optim.cg : General regularized OT + + """ + + a = np.asarray(a, dtype=np.float64) + b = np.asarray(b, dtype=np.float64) + M = np.asarray(M, dtype=np.float64) + + dim_a, dim_b = M.shape + + if len(a) == 0: + a = np.ones(dim_a, dtype=np.float64) / dim_a + if len(b) == 0: + b = np.ones(dim_b, dtype=np.float64) / dim_b + + if len(b.shape) > 1: + n_hists = b.shape[1] + else: + n_hists = 0 + + if log: + log = {'err': []} + + # we assume that no distances are null except those of the diagonal of + # distances + if n_hists: + u = np.ones((dim_a, n_hists)) / dim_a + v = np.ones((dim_b, n_hists)) / dim_b + a = a.reshape(dim_a, 1) + else: + u = np.ones(dim_a) / dim_a + v = np.ones(dim_b) / dim_b + + # print(reg) + # Next 3 lines equivalent to K= np.exp(-M/reg), but faster to compute + K = np.empty(M.shape, dtype=M.dtype) + np.divide(M, -reg, out=K) + np.exp(K, out=K) + + fi = reg_m / (reg_m + reg) + + cpt = 0 + err = 1. + alpha = np.zeros(dim_a) + beta = np.zeros(dim_b) + while (err > stopThr and cpt < numItermax): + uprev = u + vprev = v + + Kv = K.dot(v) + f_alpha = np.exp(- alpha / (reg + reg_m)) + f_beta = np.exp(- beta / (reg + reg_m)) + + if n_hists: + f_alpha = f_alpha[:, None] + f_beta = f_beta[:, None] + u = ((a / (Kv + 1e-16)) ** fi) * f_alpha + Ktu = K.T.dot(u) + v = ((b / (Ktu + 1e-16)) ** fi) * f_beta + absorbing = False + if (u > tau).any() or (v > tau).any(): + absorbing = True + if n_hists: + alpha = alpha + reg * np.log(np.max(u, 1)) + beta = beta + reg * np.log(np.max(v, 1)) + else: + alpha = alpha + reg * np.log(np.max(u)) + beta = beta + reg * np.log(np.max(v)) + K = np.exp((alpha[:, None] + beta[None, :] - + M) / reg) + v = np.ones_like(v) + Kv = K.dot(v) + + if (np.any(Ktu == 0.) + or np.any(np.isnan(u)) or np.any(np.isnan(v)) + or np.any(np.isinf(u)) or np.any(np.isinf(v))): + # we have reached the machine precision + # come back to previous solution and quit loop + warnings.warn('Numerical errors at iteration %s' % cpt) + u = uprev + v = vprev + break + if (cpt % 10 == 0 and not absorbing) or cpt == 0: + # we can speed up the process by checking for the error only all + # the 10th iterations + err = abs(u - uprev).max() / max(abs(u).max(), abs(uprev).max(), + 1.) + if log: + log['err'].append(err) + if verbose: + if cpt % 200 == 0: + print( + '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19) + print('{:5d}|{:8e}|'.format(cpt, err)) + cpt = cpt + 1 + + if err > stopThr: + warnings.warn("Stabilized Unbalanced Sinkhorn did not converge." + + "Try a larger entropy `reg` or a lower mass `reg_m`." + + "Or a larger absorption threshold `tau`.") + if n_hists: + logu = alpha[:, None] / reg + np.log(u) + logv = beta[:, None] / reg + np.log(v) + else: + logu = alpha / reg + np.log(u) + logv = beta / reg + np.log(v) + if log: + log['logu'] = logu + log['logv'] = logv + if n_hists: # return only loss + res = logsumexp(np.log(M + 1e-100)[:, :, None] + logu[:, None, :] + + logv[None, :, :] - M[:, :, None] / reg, axis=(0, 1)) + res = np.exp(res) + if log: + return res, log + else: + return res + + else: # return OT matrix + ot_matrix = np.exp(logu[:, None] + logv[None, :] - M / reg) + if log: + return ot_matrix, log + else: + return ot_matrix + + +def _barycenter_unbalanced_stabilized(A, M, reg, reg_m, weights=None, tau=1e3, + numItermax=1000, stopThr=1e-6, + verbose=False, log=False): + r"""Compute the entropic unbalanced wasserstein barycenter of A with stabilization. The function solves the following optimization problem: @@ -412,28 +665,184 @@ def barycenter_unbalanced(A, M, reg, alpha, weights=None, numItermax=1000, where : - - :math:`Wu_{reg}(\cdot,\cdot)` is the unbalanced entropic regularized Wasserstein distance (see ot.unbalanced.sinkhorn_unbalanced) - - :math:`\mathbf{a}_i` are training distributions in the columns of matrix :math:`\mathbf{A}` - - reg and :math:`\mathbf{M}` are respectively the regularization term and the cost matrix for OT - - alpha is the marginal relaxation hyperparameter - The algorithm used for solving the problem is the generalized Sinkhorn-Knopp matrix scaling algorithm as proposed in [10]_ + - :math:`Wu_{reg}(\cdot,\cdot)` is the unbalanced entropic regularized + Wasserstein distance (see ot.unbalanced.sinkhorn_unbalanced) + - :math:`\mathbf{a}_i` are training distributions in the columns of + matrix :math:`\mathbf{A}` + - reg and :math:`\mathbf{M}` are respectively the regularization term and + the cost matrix for OT + - reg_mis the marginal relaxation hyperparameter + The algorithm used for solving the problem is the generalized + Sinkhorn-Knopp matrix scaling algorithm as proposed in [10]_ Parameters ---------- - A : np.ndarray (d,n) - n training distributions a_i of size d - M : np.ndarray (d,d) - loss matrix for OT + A : np.ndarray (dim, n_hists) + `n_hists` training distributions a_i of dimension dim + M : np.ndarray (dim, dim) + ground metric matrix for OT. reg : float Entropy regularization term > 0 - alpha : float + reg_m : float Marginal relaxation term > 0 - weights : np.ndarray (n,) - Weights of each histogram a_i on the simplex (barycentric coodinates) + tau : float + Stabilization threshold for log domain absorption. + weights : np.ndarray (n_hists,) optional + Weight of each distribution (barycentric coodinates) + If None, uniform weights are used. numItermax : int, optional Max number of iterations stopThr : float, optional - Stop threshol on error (>0) + Stop threshol on error (> 0) + verbose : bool, optional + Print information along iterations + log : bool, optional + record log if True + + + Returns + ------- + a : (dim,) ndarray + Unbalanced Wasserstein barycenter + log : dict + log dictionary return only if log==True in parameters + + + References + ---------- + + .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, + G. (2015). Iterative Bregman projections for regularized transportation + problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138. + .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). + Scaling algorithms for unbalanced transport problems. arXiv preprint + arXiv:1607.05816. + + + """ + dim, n_hists = A.shape + if weights is None: + weights = np.ones(n_hists) / n_hists + else: + assert(len(weights) == A.shape[1]) + + if log: + log = {'err': []} + + fi = reg_m / (reg_m + reg) + + u = np.ones((dim, n_hists)) / dim + v = np.ones((dim, n_hists)) / dim + + # print(reg) + # Next 3 lines equivalent to K= np.exp(-M/reg), but faster to compute + K = np.empty(M.shape, dtype=M.dtype) + np.divide(M, -reg, out=K) + np.exp(K, out=K) + + fi = reg_m / (reg_m + reg) + + cpt = 0 + err = 1. + alpha = np.zeros(dim) + beta = np.zeros(dim) + q = np.ones(dim) / dim + while (err > stopThr and cpt < numItermax): + qprev = q + Kv = K.dot(v) + f_alpha = np.exp(- alpha / (reg + reg_m)) + f_beta = np.exp(- beta / (reg + reg_m)) + f_alpha = f_alpha[:, None] + f_beta = f_beta[:, None] + u = ((A / (Kv + 1e-16)) ** fi) * f_alpha + Ktu = K.T.dot(u) + q = (Ktu ** (1 - fi)) * f_beta + q = q.dot(weights) ** (1 / (1 - fi)) + Q = q[:, None] + v = ((Q / (Ktu + 1e-16)) ** fi) * f_beta + absorbing = False + if (u > tau).any() or (v > tau).any(): + absorbing = True + alpha = alpha + reg * np.log(np.max(u, 1)) + beta = beta + reg * np.log(np.max(v, 1)) + K = np.exp((alpha[:, None] + beta[None, :] - + M) / reg) + v = np.ones_like(v) + Kv = K.dot(v) + if (np.any(Ktu == 0.) + or np.any(np.isnan(u)) or np.any(np.isnan(v)) + or np.any(np.isinf(u)) or np.any(np.isinf(v))): + # we have reached the machine precision + # come back to previous solution and quit loop + warnings.warn('Numerical errors at iteration %s' % cpt) + q = qprev + break + if (cpt % 10 == 0 and not absorbing) or cpt == 0: + # we can speed up the process by checking for the error only all + # the 10th iterations + err = abs(q - qprev).max() / max(abs(q).max(), + abs(qprev).max(), 1.) + if log: + log['err'].append(err) + if verbose: + if cpt % 50 == 0: + print( + '{:5s}|{:12s}'.format('It.', 'Err') + '\n' + '-' * 19) + print('{:5d}|{:8e}|'.format(cpt, err)) + + cpt += 1 + if err > stopThr: + warnings.warn("Stabilized Unbalanced Sinkhorn did not converge." + + "Try a larger entropy `reg` or a lower mass `reg_m`." + + "Or a larger absorption threshold `tau`.") + if log: + log['niter'] = cpt + log['logu'] = np.log(u + 1e-16) + log['logv'] = np.log(v + 1e-16) + return q, log + else: + return q + + +def _barycenter_unbalanced(A, M, reg, reg_m, weights=None, + numItermax=1000, stopThr=1e-6, + verbose=False, log=False): + r"""Compute the entropic unbalanced wasserstein barycenter of A. + + The function solves the following optimization problem with a + + .. math:: + \mathbf{a} = arg\min_\mathbf{a} \sum_i Wu_{reg}(\mathbf{a},\mathbf{a}_i) + + where : + + - :math:`Wu_{reg}(\cdot,\cdot)` is the unbalanced entropic regularized + Wasserstein distance (see ot.unbalanced.sinkhorn_unbalanced) + - :math:`\mathbf{a}_i` are training distributions in the columns of matrix + :math:`\mathbf{A}` + - reg and :math:`\mathbf{M}` are respectively the regularization term and + the cost matrix for OT + - reg_mis the marginal relaxation hyperparameter + The algorithm used for solving the problem is the generalized + Sinkhorn-Knopp matrix scaling algorithm as proposed in [10]_ + + Parameters + ---------- + A : np.ndarray (dim, n_hists) + `n_hists` training distributions a_i of dimension dim + M : np.ndarray (dim, dim) + ground metric matrix for OT. + reg : float + Entropy regularization term > 0 + reg_m: float + Marginal relaxation term > 0 + weights : np.ndarray (n_hists,) optional + Weight of each distribution (barycentric coodinates) + If None, uniform weights are used. + numItermax : int, optional + Max number of iterations + stopThr : float, optional + Stop threshol on error (> 0) verbose : bool, optional Print information along iterations log : bool, optional @@ -442,7 +851,7 @@ def barycenter_unbalanced(A, M, reg, alpha, weights=None, numItermax=1000, Returns ------- - a : (d,) ndarray + a : (dim,) ndarray Unbalanced Wasserstein barycenter log : dict log dictionary return only if log==True in parameters @@ -451,12 +860,16 @@ def barycenter_unbalanced(A, M, reg, alpha, weights=None, numItermax=1000, References ---------- - .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138. - .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816. + .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. + (2015). Iterative Bregman projections for regularized transportation + problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138. + .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). + Scaling algorithms for unbalanced transport problems. arXiv preprin + arXiv:1607.05816. """ - p, n_hists = A.shape + dim, n_hists = A.shape if weights is None: weights = np.ones(n_hists) / n_hists else: @@ -467,10 +880,10 @@ def barycenter_unbalanced(A, M, reg, alpha, weights=None, numItermax=1000, K = np.exp(- M / reg) - fi = alpha / (alpha + reg) + fi = reg_m / (reg_m + reg) - v = np.ones((p, n_hists)) / p - u = np.ones((p, 1)) / p + v = np.ones((dim, n_hists)) / dim + u = np.ones((dim, 1)) / dim cpt = 0 err = 1. @@ -499,8 +912,11 @@ def barycenter_unbalanced(A, M, reg, alpha, weights=None, numItermax=1000, if cpt % 10 == 0: # we can speed up the process by checking for the error only all # the 10th iterations - err = np.sum((u - uprev) ** 2) / np.sum((u) ** 2) + \ - np.sum((v - vprev) ** 2) / np.sum((v) ** 2) + err_u = abs(u - uprev).max() + err_u /= max(abs(u).max(), abs(uprev).max(), 1.) + err_v = abs(v - vprev).max() + err_v /= max(abs(v).max(), abs(vprev).max(), 1.) + err = 0.5 * (err_u + err_v) if log: log['err'].append(err) if verbose: @@ -512,8 +928,95 @@ def barycenter_unbalanced(A, M, reg, alpha, weights=None, numItermax=1000, cpt += 1 if log: log['niter'] = cpt - log['u'] = u - log['v'] = v + log['logu'] = np.log(u + 1e-16) + log['logv'] = np.log(v + 1e-16) return q, log else: return q + + +def barycenter_unbalanced(A, M, reg, reg_m, method="sinkhorn", weights=None, + numItermax=1000, stopThr=1e-6, + verbose=False, log=False, **kwargs): + r"""Compute the entropic unbalanced wasserstein barycenter of A. + + The function solves the following optimization problem with a + + .. math:: + \mathbf{a} = arg\min_\mathbf{a} \sum_i Wu_{reg}(\mathbf{a},\mathbf{a}_i) + + where : + + - :math:`Wu_{reg}(\cdot,\cdot)` is the unbalanced entropic regularized + Wasserstein distance (see ot.unbalanced.sinkhorn_unbalanced) + - :math:`\mathbf{a}_i` are training distributions in the columns of matrix + :math:`\mathbf{A}` + - reg and :math:`\mathbf{M}` are respectively the regularization term and + the cost matrix for OT + - reg_mis the marginal relaxation hyperparameter + The algorithm used for solving the problem is the generalized + Sinkhorn-Knopp matrix scaling algorithm as proposed in [10]_ + + Parameters + ---------- + A : np.ndarray (dim, n_hists) + `n_hists` training distributions a_i of dimension dim + M : np.ndarray (dim, dim) + ground metric matrix for OT. + reg : float + Entropy regularization term > 0 + reg_m: float + Marginal relaxation term > 0 + weights : np.ndarray (n_hists,) optional + Weight of each distribution (barycentric coodinates) + If None, uniform weights are used. + numItermax : int, optional + Max number of iterations + stopThr : float, optional + Stop threshol on error (> 0) + verbose : bool, optional + Print information along iterations + log : bool, optional + record log if True + + + Returns + ------- + a : (dim,) ndarray + Unbalanced Wasserstein barycenter + log : dict + log dictionary return only if log==True in parameters + + + References + ---------- + + .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. + (2015). Iterative Bregman projections for regularized transportation + problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138. + .. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). + Scaling algorithms for unbalanced transport problems. arXiv preprin + arXiv:1607.05816. + + """ + + if method.lower() == 'sinkhorn': + return _barycenter_unbalanced(A, M, reg, reg_m, + numItermax=numItermax, + stopThr=stopThr, verbose=verbose, + log=log, **kwargs) + + elif method.lower() == 'sinkhorn_stabilized': + return _barycenter_unbalanced_stabilized(A, M, reg, reg_m, + numItermax=numItermax, + stopThr=stopThr, + verbose=verbose, + log=log, **kwargs) + elif method.lower() in ['sinkhorn_reg_scaling']: + warnings.warn('Method not implemented yet. Using classic Sinkhorn Knopp') + return _barycenter_unbalanced(A, M, reg, reg_m, + numItermax=numItermax, + stopThr=stopThr, verbose=verbose, + log=log, **kwargs) + else: + raise ValueError("Unknown method '%s'." % method) diff --git a/pytest.ini b/pytest.ini new file mode 100644 index 0000000..e69de29 diff --git a/test/test_bregman.py b/test/test_bregman.py index 83ebba8..f70df10 100644 --- a/test/test_bregman.py +++ b/test/test_bregman.py @@ -7,6 +7,7 @@ import numpy as np import ot +import pytest def test_sinkhorn(): @@ -71,13 +72,11 @@ def test_sinkhorn_variants(): Gs = ot.sinkhorn(u, u, M, 1, method='sinkhorn_stabilized', stopThr=1e-10) Ges = ot.sinkhorn( u, u, M, 1, method='sinkhorn_epsilon_scaling', stopThr=1e-10) - Gerr = ot.sinkhorn(u, u, M, 1, method='do_not_exists', stopThr=1e-10) G_green = ot.sinkhorn(u, u, M, 1, method='greenkhorn', stopThr=1e-10) # check values np.testing.assert_allclose(G0, Gs, atol=1e-05) np.testing.assert_allclose(G0, Ges, atol=1e-05) - np.testing.assert_allclose(G0, Gerr) np.testing.assert_allclose(G0, G_green, atol=1e-5) print(G0, G_green) @@ -96,18 +95,17 @@ def test_sinkhorn_variants_log(): Gs, logs = ot.sinkhorn(u, u, M, 1, method='sinkhorn_stabilized', stopThr=1e-10, log=True) Ges, loges = ot.sinkhorn( u, u, M, 1, method='sinkhorn_epsilon_scaling', stopThr=1e-10, log=True) - Gerr, logerr = ot.sinkhorn(u, u, M, 1, method='do_not_exists', stopThr=1e-10, log=True) G_green, loggreen = ot.sinkhorn(u, u, M, 1, method='greenkhorn', stopThr=1e-10, log=True) # check values np.testing.assert_allclose(G0, Gs, atol=1e-05) np.testing.assert_allclose(G0, Ges, atol=1e-05) - np.testing.assert_allclose(G0, Gerr) np.testing.assert_allclose(G0, G_green, atol=1e-5) print(G0, G_green) -def test_bary(): +@pytest.mark.parametrize("method", ["sinkhorn", "sinkhorn_stabilized"]) +def test_barycenter(method): n_bins = 100 # nb bins @@ -126,14 +124,42 @@ def test_bary(): weights = np.array([1 - alpha, alpha]) # wasserstein - reg = 1e-3 - bary_wass = ot.bregman.barycenter(A, M, reg, weights) + reg = 1e-2 + bary_wass = ot.bregman.barycenter(A, M, reg, weights, method=method) np.testing.assert_allclose(1, np.sum(bary_wass)) ot.bregman.barycenter(A, M, reg, log=True, verbose=True) +def test_barycenter_stabilization(): + + n_bins = 100 # nb bins + + # Gaussian distributions + a1 = ot.datasets.make_1D_gauss(n_bins, m=30, s=10) # m= mean, s= std + a2 = ot.datasets.make_1D_gauss(n_bins, m=40, s=10) + + # creating matrix A containing all distributions + A = np.vstack((a1, a2)).T + + # loss matrix + normalization + M = ot.utils.dist0(n_bins) + M /= M.max() + + alpha = 0.5 # 0<=alpha<=1 + weights = np.array([1 - alpha, alpha]) + + # wasserstein + reg = 1e-2 + bar_stable = ot.bregman.barycenter(A, M, reg, weights, + method="sinkhorn_stabilized", + stopThr=1e-8) + bar = ot.bregman.barycenter(A, M, reg, weights, method="sinkhorn", + stopThr=1e-8) + np.testing.assert_allclose(bar, bar_stable) + + def test_wasserstein_bary_2d(): size = 100 # size of a square image @@ -279,3 +305,35 @@ def test_stabilized_vs_sinkhorn_multidim(): method="sinkhorn", log=True) np.testing.assert_allclose(G, G2) + + +def test_implemented_methods(): + IMPLEMENTED_METHODS = ['sinkhorn', 'sinkhorn_stabilized'] + ONLY_1D_methods = ['greenkhorn', 'sinkhorn_epsilon_scaling'] + NOT_VALID_TOKENS = ['foo'] + # test generalized sinkhorn for unbalanced OT barycenter + n = 3 + rng = np.random.RandomState(42) + + x = rng.randn(n, 2) + a = ot.utils.unif(n) + + # make dists unbalanced + b = ot.utils.unif(n) + A = rng.rand(n, 2) + M = ot.dist(x, x) + epsilon = 1. + + for method in IMPLEMENTED_METHODS: + ot.bregman.sinkhorn(a, b, M, epsilon, method=method) + ot.bregman.sinkhorn2(a, b, M, epsilon, method=method) + ot.bregman.barycenter(A, M, reg=epsilon, method=method) + with pytest.raises(ValueError): + for method in set(NOT_VALID_TOKENS): + ot.bregman.sinkhorn(a, b, M, epsilon, method=method) + ot.bregman.sinkhorn2(a, b, M, epsilon, method=method) + ot.bregman.barycenter(A, M, reg=epsilon, method=method) + for method in ONLY_1D_methods: + ot.bregman.sinkhorn(a, b, M, epsilon, method=method) + with pytest.raises(ValueError): + ot.bregman.sinkhorn2(a, b, M, epsilon, method=method) diff --git a/test/test_unbalanced.py b/test/test_unbalanced.py index 1395fe1..ca1efba 100644 --- a/test/test_unbalanced.py +++ b/test/test_unbalanced.py @@ -7,9 +7,12 @@ import numpy as np import ot import pytest +from ot.unbalanced import barycenter_unbalanced +from scipy.special import logsumexp -@pytest.mark.parametrize("method", ["sinkhorn"]) + +@pytest.mark.parametrize("method", ["sinkhorn", "sinkhorn_stabilized"]) def test_unbalanced_convergence(method): # test generalized sinkhorn for unbalanced OT n = 100 @@ -23,29 +26,35 @@ def test_unbalanced_convergence(method): M = ot.dist(x, x) epsilon = 1. - alpha = 1. - K = np.exp(- M / epsilon) + reg_m = 1. - G, log = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg=epsilon, alpha=alpha, - stopThr=1e-10, method=method, + G, log = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg=epsilon, + reg_m=reg_m, + method=method, log=True) - loss = ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, alpha, + loss = ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, reg_m, method=method) # check fixed point equations - fi = alpha / (alpha + epsilon) - v_final = (b / K.T.dot(log["u"])) ** fi - u_final = (a / K.dot(log["v"])) ** fi + # in log-domain + fi = reg_m / (reg_m + epsilon) + logb = np.log(b + 1e-16) + loga = np.log(a + 1e-16) + logKtu = logsumexp(log["logu"][None, :] - M.T / epsilon, axis=1) + logKv = logsumexp(log["logv"][None, :] - M / epsilon, axis=1) + + v_final = fi * (logb - logKtu) + u_final = fi * (loga - logKv) np.testing.assert_allclose( - u_final, log["u"], atol=1e-05) + u_final, log["logu"], atol=1e-05) np.testing.assert_allclose( - v_final, log["v"], atol=1e-05) + v_final, log["logv"], atol=1e-05) # check if sinkhorn_unbalanced2 returns the correct loss np.testing.assert_allclose((G * M).sum(), loss, atol=1e-5) -@pytest.mark.parametrize("method", ["sinkhorn"]) +@pytest.mark.parametrize("method", ["sinkhorn", "sinkhorn_stabilized"]) def test_unbalanced_multiple_inputs(method): # test generalized sinkhorn for unbalanced OT n = 100 @@ -59,28 +68,59 @@ def test_unbalanced_multiple_inputs(method): M = ot.dist(x, x) epsilon = 1. - alpha = 1. - K = np.exp(- M / epsilon) + reg_m = 1. loss, log = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg=epsilon, - alpha=alpha, - stopThr=1e-10, method=method, + reg_m=reg_m, + method=method, log=True) # check fixed point equations - fi = alpha / (alpha + epsilon) - v_final = (b / K.T.dot(log["u"])) ** fi - - u_final = (a[:, None] / K.dot(log["v"])) ** fi + # in log-domain + fi = reg_m / (reg_m + epsilon) + logb = np.log(b + 1e-16) + loga = np.log(a + 1e-16)[:, None] + logKtu = logsumexp(log["logu"][:, None, :] - M[:, :, None] / epsilon, + axis=0) + logKv = logsumexp(log["logv"][None, :] - M[:, :, None] / epsilon, axis=1) + v_final = fi * (logb - logKtu) + u_final = fi * (loga - logKv) np.testing.assert_allclose( - u_final, log["u"], atol=1e-05) + u_final, log["logu"], atol=1e-05) np.testing.assert_allclose( - v_final, log["v"], atol=1e-05) + v_final, log["logv"], atol=1e-05) assert len(loss) == b.shape[1] -def test_unbalanced_barycenter(): +def test_stabilized_vs_sinkhorn(): + # test if stable version matches sinkhorn + n = 100 + + # Gaussian distributions + a = ot.datasets.make_1D_gauss(n, m=20, s=5) # m= mean, s= std + b1 = ot.datasets.make_1D_gauss(n, m=60, s=8) + b2 = ot.datasets.make_1D_gauss(n, m=30, s=4) + + # creating matrix A containing all distributions + b = np.vstack((b1, b2)).T + + M = ot.utils.dist0(n) + M /= np.median(M) + epsilon = 0.1 + reg_m = 1. + G, log = ot.unbalanced.sinkhorn_unbalanced2(a, b, M, reg=epsilon, + method="sinkhorn_stabilized", + reg_m=reg_m, + log=True) + G2, log2 = ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, reg_m, + method="sinkhorn", log=True) + + np.testing.assert_allclose(G, G2, atol=1e-5) + + +@pytest.mark.parametrize("method", ["sinkhorn", "sinkhorn_stabilized"]) +def test_unbalanced_barycenter(method): # test generalized sinkhorn for unbalanced OT barycenter n = 100 rng = np.random.RandomState(42) @@ -92,27 +132,56 @@ def test_unbalanced_barycenter(): A = A * np.array([1, 2])[None, :] M = ot.dist(x, x) epsilon = 1. - alpha = 1. - K = np.exp(- M / epsilon) + reg_m = 1. - q, log = ot.unbalanced.barycenter_unbalanced(A, M, reg=epsilon, alpha=alpha, - stopThr=1e-10, - log=True) + q, log = barycenter_unbalanced(A, M, reg=epsilon, reg_m=reg_m, + method=method, log=True) # check fixed point equations - fi = alpha / (alpha + epsilon) - v_final = (q[:, None] / K.T.dot(log["u"])) ** fi - u_final = (A / K.dot(log["v"])) ** fi + fi = reg_m / (reg_m + epsilon) + logA = np.log(A + 1e-16) + logq = np.log(q + 1e-16)[:, None] + logKtu = logsumexp(log["logu"][:, None, :] - M[:, :, None] / epsilon, + axis=0) + logKv = logsumexp(log["logv"][None, :] - M[:, :, None] / epsilon, axis=1) + v_final = fi * (logq - logKtu) + u_final = fi * (logA - logKv) np.testing.assert_allclose( - u_final, log["u"], atol=1e-05) + u_final, log["logu"], atol=1e-05) np.testing.assert_allclose( - v_final, log["v"], atol=1e-05) + v_final, log["logv"], atol=1e-05) + + +def test_barycenter_stabilized_vs_sinkhorn(): + # test generalized sinkhorn for unbalanced OT barycenter + n = 100 + rng = np.random.RandomState(42) + + x = rng.randn(n, 2) + A = rng.rand(n, 2) + + # make dists unbalanced + A = A * np.array([1, 4])[None, :] + M = ot.dist(x, x) + epsilon = 0.5 + reg_m = 10 + + qstable, log = barycenter_unbalanced(A, M, reg=epsilon, + reg_m=reg_m, log=True, + tau=100, + method="sinkhorn_stabilized", + ) + q, log = barycenter_unbalanced(A, M, reg=epsilon, reg_m=reg_m, + method="sinkhorn", + log=True) + + np.testing.assert_allclose( + q, qstable, atol=1e-05) def test_implemented_methods(): - IMPLEMENTED_METHODS = ['sinkhorn'] - TO_BE_IMPLEMENTED_METHODS = ['sinkhorn_stabilized', - 'sinkhorn_epsilon_scaling'] + IMPLEMENTED_METHODS = ['sinkhorn', 'sinkhorn_stabilized'] + TO_BE_IMPLEMENTED_METHODS = ['sinkhorn_reg_scaling'] NOT_VALID_TOKENS = ['foo'] # test generalized sinkhorn for unbalanced OT barycenter n = 3 @@ -123,24 +192,30 @@ def test_implemented_methods(): # make dists unbalanced b = ot.utils.unif(n) * 1.5 - + A = rng.rand(n, 2) M = ot.dist(x, x) epsilon = 1. - alpha = 1. + reg_m = 1. for method in IMPLEMENTED_METHODS: - ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, alpha, + ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, reg_m, method=method) - ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, alpha, + ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, reg_m, method=method) + barycenter_unbalanced(A, M, reg=epsilon, reg_m=reg_m, + method=method) with pytest.warns(UserWarning, match='not implemented'): for method in set(TO_BE_IMPLEMENTED_METHODS): - ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, alpha, + ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, reg_m, method=method) - ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, alpha, + ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, reg_m, method=method) + barycenter_unbalanced(A, M, reg=epsilon, reg_m=reg_m, + method=method) with pytest.raises(ValueError): for method in set(NOT_VALID_TOKENS): - ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, alpha, + ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, reg_m, method=method) - ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, alpha, + ot.unbalanced.sinkhorn_unbalanced2(a, b, M, epsilon, reg_m, method=method) + barycenter_unbalanced(A, M, reg=epsilon, reg_m=reg_m, + method=method) -- cgit v1.2.3