From 062071b20d1d40c64bb619931bd11bd28e780485 Mon Sep 17 00:00:00 2001 From: RĂ©mi Flamary Date: Fri, 1 Sep 2017 15:31:44 +0200 Subject: update example with rst titles --- docs/source/auto_examples/plot_OT_2D_samples.ipynb | 76 +++++++++++++++++++++- 1 file changed, 74 insertions(+), 2 deletions(-) (limited to 'docs/source/auto_examples/plot_OT_2D_samples.ipynb') diff --git a/docs/source/auto_examples/plot_OT_2D_samples.ipynb b/docs/source/auto_examples/plot_OT_2D_samples.ipynb index fc4ce50..0ed7367 100644 --- a/docs/source/auto_examples/plot_OT_2D_samples.ipynb +++ b/docs/source/auto_examples/plot_OT_2D_samples.ipynb @@ -15,7 +15,7 @@ }, { "source": [ - "\n# 2D Optimal transport between empirical distributions\n\n\n\n" + "\n# 2D Optimal transport between empirical distributions\n\n\nIllustration of 2D optimal transport between discributions that are weighted\nsum of diracs. The OT matrix is plotted with the samples.\n\n\n" ], "cell_type": "markdown", "metadata": {} @@ -24,7 +24,79 @@ "execution_count": null, "cell_type": "code", "source": [ - "# Author: Remi Flamary \n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\nimport ot\n\n#%% parameters and data generation\n\nn = 50 # nb samples\n\nmu_s = np.array([0, 0])\ncov_s = np.array([[1, 0], [0, 1]])\n\nmu_t = np.array([4, 4])\ncov_t = np.array([[1, -.8], [-.8, 1]])\n\nxs = ot.datasets.get_2D_samples_gauss(n, mu_s, cov_s)\nxt = ot.datasets.get_2D_samples_gauss(n, mu_t, cov_t)\n\na, b = np.ones((n,)) / n, np.ones((n,)) / n # uniform distribution on samples\n\n# loss matrix\nM = ot.dist(xs, xt)\nM /= M.max()\n\n#%% plot samples\n\npl.figure(1)\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.legend(loc=0)\npl.title('Source and target distributions')\n\npl.figure(2)\npl.imshow(M, interpolation='nearest')\npl.title('Cost matrix M')\n\n\n#%% EMD\n\nG0 = ot.emd(a, b, M)\n\npl.figure(3)\npl.imshow(G0, interpolation='nearest')\npl.title('OT matrix G0')\n\npl.figure(4)\not.plot.plot2D_samples_mat(xs, xt, G0, c=[.5, .5, 1])\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.legend(loc=0)\npl.title('OT matrix with samples')\n\n\n#%% sinkhorn\n\n# reg term\nlambd = 1e-3\n\nGs = ot.sinkhorn(a, b, M, lambd)\n\npl.figure(5)\npl.imshow(Gs, interpolation='nearest')\npl.title('OT matrix sinkhorn')\n\npl.figure(6)\not.plot.plot2D_samples_mat(xs, xt, Gs, color=[.5, .5, 1])\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.legend(loc=0)\npl.title('OT matrix Sinkhorn with samples')\n\npl.show()" + "# Author: Remi Flamary \n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\nimport ot" + ], + "outputs": [], + "metadata": { + "collapsed": false + } + }, + { + "source": [ + "Generate data\n#############################################################################\n\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "execution_count": null, + "cell_type": "code", + "source": [ + "#%% parameters and data generation\n\nn = 50 # nb samples\n\nmu_s = np.array([0, 0])\ncov_s = np.array([[1, 0], [0, 1]])\n\nmu_t = np.array([4, 4])\ncov_t = np.array([[1, -.8], [-.8, 1]])\n\nxs = ot.datasets.get_2D_samples_gauss(n, mu_s, cov_s)\nxt = ot.datasets.get_2D_samples_gauss(n, mu_t, cov_t)\n\na, b = np.ones((n,)) / n, np.ones((n,)) / n # uniform distribution on samples\n\n# loss matrix\nM = ot.dist(xs, xt)\nM /= M.max()" + ], + "outputs": [], + "metadata": { + "collapsed": false + } + }, + { + "source": [ + "Plot data\n#############################################################################\n\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "execution_count": null, + "cell_type": "code", + "source": [ + "#%% plot samples\n\npl.figure(1)\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.legend(loc=0)\npl.title('Source and target distributions')\n\npl.figure(2)\npl.imshow(M, interpolation='nearest')\npl.title('Cost matrix M')" + ], + "outputs": [], + "metadata": { + "collapsed": false + } + }, + { + "source": [ + "Compute EMD\n#############################################################################\n\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "execution_count": null, + "cell_type": "code", + "source": [ + "#%% EMD\n\nG0 = ot.emd(a, b, M)\n\npl.figure(3)\npl.imshow(G0, interpolation='nearest')\npl.title('OT matrix G0')\n\npl.figure(4)\not.plot.plot2D_samples_mat(xs, xt, G0, c=[.5, .5, 1])\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.legend(loc=0)\npl.title('OT matrix with samples')" + ], + "outputs": [], + "metadata": { + "collapsed": false + } + }, + { + "source": [ + "Compute Sinkhorn\n#############################################################################\n\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "execution_count": null, + "cell_type": "code", + "source": [ + "#%% sinkhorn\n\n# reg term\nlambd = 1e-3\n\nGs = ot.sinkhorn(a, b, M, lambd)\n\npl.figure(5)\npl.imshow(Gs, interpolation='nearest')\npl.title('OT matrix sinkhorn')\n\npl.figure(6)\not.plot.plot2D_samples_mat(xs, xt, Gs, color=[.5, .5, 1])\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.legend(loc=0)\npl.title('OT matrix Sinkhorn with samples')\n\npl.show()" ], "outputs": [], "metadata": { -- cgit v1.2.3