From b5e45bbc83fd8cd8c1634a78f2f983d1cf28af73 Mon Sep 17 00:00:00 2001 From: RĂ©mi Flamary Date: Wed, 30 May 2018 09:58:51 +0200 Subject: update examples and notebooks --- docs/source/auto_examples/plot_compute_emd.ipynb | 168 +++++++++++------------ 1 file changed, 84 insertions(+), 84 deletions(-) (limited to 'docs/source/auto_examples/plot_compute_emd.ipynb') diff --git a/docs/source/auto_examples/plot_compute_emd.ipynb b/docs/source/auto_examples/plot_compute_emd.ipynb index b9b8bc5..562eff8 100644 --- a/docs/source/auto_examples/plot_compute_emd.ipynb +++ b/docs/source/auto_examples/plot_compute_emd.ipynb @@ -1,126 +1,126 @@ { - "nbformat_minor": 0, - "nbformat": 4, "cells": [ { - "execution_count": null, - "cell_type": "code", - "source": [ - "%matplotlib inline" - ], - "outputs": [], + "cell_type": "code", + "execution_count": null, "metadata": { "collapsed": false - } - }, + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "\n# Plot multiple EMD\n\n\nShows how to compute multiple EMD and Sinkhorn with two differnt\nground metrics and plot their values for diffeent distributions.\n\n\n\n" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", - "source": [ - "# Author: Remi Flamary \n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\nimport ot\nfrom ot.datasets import get_1D_gauss as gauss" - ], - "outputs": [], + "cell_type": "code", + "execution_count": null, "metadata": { "collapsed": false - } - }, + }, + "outputs": [], + "source": [ + "# Author: Remi Flamary \n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\nimport ot\nfrom ot.datasets import make_1D_gauss as gauss" + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Generate data\n-------------\n\n" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", - "source": [ - "#%% parameters\n\nn = 100 # nb bins\nn_target = 50 # nb target distributions\n\n\n# bin positions\nx = np.arange(n, dtype=np.float64)\n\nlst_m = np.linspace(20, 90, n_target)\n\n# Gaussian distributions\na = gauss(n, m=20, s=5) # m= mean, s= std\n\nB = np.zeros((n, n_target))\n\nfor i, m in enumerate(lst_m):\n B[:, i] = gauss(n, m=m, s=5)\n\n# loss matrix and normalization\nM = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'euclidean')\nM /= M.max()\nM2 = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'sqeuclidean')\nM2 /= M2.max()" - ], - "outputs": [], + "cell_type": "code", + "execution_count": null, "metadata": { "collapsed": false - } - }, + }, + "outputs": [], + "source": [ + "#%% parameters\n\nn = 100 # nb bins\nn_target = 50 # nb target distributions\n\n\n# bin positions\nx = np.arange(n, dtype=np.float64)\n\nlst_m = np.linspace(20, 90, n_target)\n\n# Gaussian distributions\na = gauss(n, m=20, s=5) # m= mean, s= std\n\nB = np.zeros((n, n_target))\n\nfor i, m in enumerate(lst_m):\n B[:, i] = gauss(n, m=m, s=5)\n\n# loss matrix and normalization\nM = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'euclidean')\nM /= M.max()\nM2 = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'sqeuclidean')\nM2 /= M2.max()" + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Plot data\n---------\n\n" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", - "source": [ - "#%% plot the distributions\n\npl.figure(1)\npl.subplot(2, 1, 1)\npl.plot(x, a, 'b', label='Source distribution')\npl.title('Source distribution')\npl.subplot(2, 1, 2)\npl.plot(x, B, label='Target distributions')\npl.title('Target distributions')\npl.tight_layout()" - ], - "outputs": [], + "cell_type": "code", + "execution_count": null, "metadata": { "collapsed": false - } - }, + }, + "outputs": [], + "source": [ + "#%% plot the distributions\n\npl.figure(1)\npl.subplot(2, 1, 1)\npl.plot(x, a, 'b', label='Source distribution')\npl.title('Source distribution')\npl.subplot(2, 1, 2)\npl.plot(x, B, label='Target distributions')\npl.title('Target distributions')\npl.tight_layout()" + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Compute EMD for the different losses\n------------------------------------\n\n" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", - "source": [ - "#%% Compute and plot distributions and loss matrix\n\nd_emd = ot.emd2(a, B, M) # direct computation of EMD\nd_emd2 = ot.emd2(a, B, M2) # direct computation of EMD with loss M2\n\n\npl.figure(2)\npl.plot(d_emd, label='Euclidean EMD')\npl.plot(d_emd2, label='Squared Euclidean EMD')\npl.title('EMD distances')\npl.legend()" - ], - "outputs": [], + "cell_type": "code", + "execution_count": null, "metadata": { "collapsed": false - } - }, + }, + "outputs": [], + "source": [ + "#%% Compute and plot distributions and loss matrix\n\nd_emd = ot.emd2(a, B, M) # direct computation of EMD\nd_emd2 = ot.emd2(a, B, M2) # direct computation of EMD with loss M2\n\n\npl.figure(2)\npl.plot(d_emd, label='Euclidean EMD')\npl.plot(d_emd2, label='Squared Euclidean EMD')\npl.title('EMD distances')\npl.legend()" + ] + }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Compute Sinkhorn for the different losses\n-----------------------------------------\n\n" - ], - "cell_type": "markdown", - "metadata": {} - }, + ] + }, { - "execution_count": null, - "cell_type": "code", - "source": [ - "#%%\nreg = 1e-2\nd_sinkhorn = ot.sinkhorn2(a, B, M, reg)\nd_sinkhorn2 = ot.sinkhorn2(a, B, M2, reg)\n\npl.figure(2)\npl.clf()\npl.plot(d_emd, label='Euclidean EMD')\npl.plot(d_emd2, label='Squared Euclidean EMD')\npl.plot(d_sinkhorn, '+', label='Euclidean Sinkhorn')\npl.plot(d_sinkhorn2, '+', label='Squared Euclidean Sinkhorn')\npl.title('EMD distances')\npl.legend()\n\npl.show()" - ], - "outputs": [], + "cell_type": "code", + "execution_count": null, "metadata": { "collapsed": false - } + }, + "outputs": [], + "source": [ + "#%%\nreg = 1e-2\nd_sinkhorn = ot.sinkhorn2(a, B, M, reg)\nd_sinkhorn2 = ot.sinkhorn2(a, B, M2, reg)\n\npl.figure(2)\npl.clf()\npl.plot(d_emd, label='Euclidean EMD')\npl.plot(d_emd2, label='Squared Euclidean EMD')\npl.plot(d_sinkhorn, '+', label='Euclidean Sinkhorn')\npl.plot(d_sinkhorn2, '+', label='Squared Euclidean Sinkhorn')\npl.title('EMD distances')\npl.legend()\n\npl.show()" + ] } - ], + ], "metadata": { "kernelspec": { - "display_name": "Python 2", - "name": "python2", - "language": "python" - }, + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, "language_info": { - "mimetype": "text/x-python", - "nbconvert_exporter": "python", - "name": "python", - "file_extension": ".py", - "version": "2.7.12", - "pygments_lexer": "ipython2", "codemirror_mode": { - "version": 2, - "name": "ipython" - } + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" } - } + }, + "nbformat": 4, + "nbformat_minor": 0 } \ No newline at end of file -- cgit v1.2.3