From c4b0aeb20d920ba366a656a9aee7afe78871c9c7 Mon Sep 17 00:00:00 2001 From: RĂ©mi Flamary Date: Tue, 25 Jun 2019 14:26:16 +0200 Subject: add fgw examples in doc --- docs/source/auto_examples/plot_fgw.py | 173 ++++++++++++++++++++++++++++++++++ 1 file changed, 173 insertions(+) create mode 100644 docs/source/auto_examples/plot_fgw.py (limited to 'docs/source/auto_examples/plot_fgw.py') diff --git a/docs/source/auto_examples/plot_fgw.py b/docs/source/auto_examples/plot_fgw.py new file mode 100644 index 0000000..43efc94 --- /dev/null +++ b/docs/source/auto_examples/plot_fgw.py @@ -0,0 +1,173 @@ +# -*- coding: utf-8 -*- +""" +============================== +Plot Fused-gromov-Wasserstein +============================== + +This example illustrates the computation of FGW for 1D measures[18]. + +.. [18] Vayer Titouan, Chapel Laetitia, Flamary R{\'e}mi, Tavenard Romain + and Courty Nicolas + "Optimal Transport for structured data with application on graphs" + International Conference on Machine Learning (ICML). 2019. + +""" + +# Author: Titouan Vayer +# +# License: MIT License + +import matplotlib.pyplot as pl +import numpy as np +import ot +from ot.gromov import gromov_wasserstein, fused_gromov_wasserstein + +############################################################################## +# Generate data +# --------- + +#%% parameters +# We create two 1D random measures +n = 20 # number of points in the first distribution +n2 = 30 # number of points in the second distribution +sig = 1 # std of first distribution +sig2 = 0.1 # std of second distribution + +np.random.seed(0) + +phi = np.arange(n)[:, None] +xs = phi + sig * np.random.randn(n, 1) +ys = np.vstack((np.ones((n // 2, 1)), 0 * np.ones((n // 2, 1)))) + sig2 * np.random.randn(n, 1) + +phi2 = np.arange(n2)[:, None] +xt = phi2 + sig * np.random.randn(n2, 1) +yt = np.vstack((np.ones((n2 // 2, 1)), 0 * np.ones((n2 // 2, 1)))) + sig2 * np.random.randn(n2, 1) +yt = yt[::-1, :] + +p = ot.unif(n) +q = ot.unif(n2) + +############################################################################## +# Plot data +# --------- + +#%% plot the distributions + +pl.close(10) +pl.figure(10, (7, 7)) + +pl.subplot(2, 1, 1) + +pl.scatter(ys, xs, c=phi, s=70) +pl.ylabel('Feature value a', fontsize=20) +pl.title('$\mu=\sum_i \delta_{x_i,a_i}$', fontsize=25, usetex=True, y=1) +pl.xticks(()) +pl.yticks(()) +pl.subplot(2, 1, 2) +pl.scatter(yt, xt, c=phi2, s=70) +pl.xlabel('coordinates x/y', fontsize=25) +pl.ylabel('Feature value b', fontsize=20) +pl.title('$\\nu=\sum_j \delta_{y_j,b_j}$', fontsize=25, usetex=True, y=1) +pl.yticks(()) +pl.tight_layout() +pl.show() + +############################################################################## +# Create structure matrices and across-feature distance matrix +# --------- + +#%% Structure matrices and across-features distance matrix +C1 = ot.dist(xs) +C2 = ot.dist(xt) +M = ot.dist(ys, yt) +w1 = ot.unif(C1.shape[0]) +w2 = ot.unif(C2.shape[0]) +Got = ot.emd([], [], M) + +############################################################################## +# Plot matrices +# --------- + +#%% +cmap = 'Reds' +pl.close(10) +pl.figure(10, (5, 5)) +fs = 15 +l_x = [0, 5, 10, 15] +l_y = [0, 5, 10, 15, 20, 25] +gs = pl.GridSpec(5, 5) + +ax1 = pl.subplot(gs[3:, :2]) + +pl.imshow(C1, cmap=cmap, interpolation='nearest') +pl.title("$C_1$", fontsize=fs) +pl.xlabel("$k$", fontsize=fs) +pl.ylabel("$i$", fontsize=fs) +pl.xticks(l_x) +pl.yticks(l_x) + +ax2 = pl.subplot(gs[:3, 2:]) + +pl.imshow(C2, cmap=cmap, interpolation='nearest') +pl.title("$C_2$", fontsize=fs) +pl.ylabel("$l$", fontsize=fs) +#pl.ylabel("$l$",fontsize=fs) +pl.xticks(()) +pl.yticks(l_y) +ax2.set_aspect('auto') + +ax3 = pl.subplot(gs[3:, 2:], sharex=ax2, sharey=ax1) +pl.imshow(M, cmap=cmap, interpolation='nearest') +pl.yticks(l_x) +pl.xticks(l_y) +pl.ylabel("$i$", fontsize=fs) +pl.title("$M_{AB}$", fontsize=fs) +pl.xlabel("$j$", fontsize=fs) +pl.tight_layout() +ax3.set_aspect('auto') +pl.show() + +############################################################################## +# Compute FGW/GW +# --------- + +#%% Computing FGW and GW +alpha = 1e-3 + +ot.tic() +Gwg, logw = fused_gromov_wasserstein(M, C1, C2, p, q, loss_fun='square_loss', alpha=alpha, verbose=True, log=True) +ot.toc() + +#%reload_ext WGW +Gg, log = gromov_wasserstein(C1, C2, p, q, loss_fun='square_loss', verbose=True, log=True) + +############################################################################## +# Visualize transport matrices +# --------- + +#%% visu OT matrix +cmap = 'Blues' +fs = 15 +pl.figure(2, (13, 5)) +pl.clf() +pl.subplot(1, 3, 1) +pl.imshow(Got, cmap=cmap, interpolation='nearest') +#pl.xlabel("$y$",fontsize=fs) +pl.ylabel("$i$", fontsize=fs) +pl.xticks(()) + +pl.title('Wasserstein ($M$ only)') + +pl.subplot(1, 3, 2) +pl.imshow(Gg, cmap=cmap, interpolation='nearest') +pl.title('Gromov ($C_1,C_2$ only)') +pl.xticks(()) +pl.subplot(1, 3, 3) +pl.imshow(Gwg, cmap=cmap, interpolation='nearest') +pl.title('FGW ($M+C_1,C_2$)') + +pl.xlabel("$j$", fontsize=fs) +pl.ylabel("$i$", fontsize=fs) + +pl.tight_layout() +pl.show() -- cgit v1.2.3