From ee19d423adc85a960c9a46e4f81c370196805dbf Mon Sep 17 00:00:00 2001 From: RĂ©mi Flamary Date: Fri, 16 Feb 2018 15:04:04 +0100 Subject: update notebooks --- docs/source/auto_examples/plot_gromov.ipynb | 144 +++++++--------------------- 1 file changed, 36 insertions(+), 108 deletions(-) (limited to 'docs/source/auto_examples/plot_gromov.ipynb') diff --git a/docs/source/auto_examples/plot_gromov.ipynb b/docs/source/auto_examples/plot_gromov.ipynb index 865848e..6d6b522 100644 --- a/docs/source/auto_examples/plot_gromov.ipynb +++ b/docs/source/auto_examples/plot_gromov.ipynb @@ -1,126 +1,54 @@ { - "nbformat_minor": 0, - "nbformat": 4, "cells": [ { - "execution_count": null, - "cell_type": "code", - "source": [ - "%matplotlib inline" - ], - "outputs": [], - "metadata": { - "collapsed": false - } - }, - { - "source": [ - "\n# Gromov-Wasserstein example\n\n\nThis example is designed to show how to use the Gromov-Wassertsein distance\ncomputation in POT.\n\n" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", - "source": [ - "# Author: Erwan Vautier \r\n# Nicolas Courty \r\n#\r\n# License: MIT License\r\n\r\nimport scipy as sp\r\nimport numpy as np\r\nimport matplotlib.pylab as pl\r\nfrom mpl_toolkits.mplot3d import Axes3D # noqa\r\nimport ot" - ], - "outputs": [], - "metadata": { - "collapsed": false - } - }, - { - "source": [ - "Sample two Gaussian distributions (2D and 3D)\r\n ---------------------------------------------\r\n\r\n The Gromov-Wasserstein distance allows to compute distances with samples that\r\n do not belong to the same metric space. For demonstration purpose, we sample\r\n two Gaussian distributions in 2- and 3-dimensional spaces.\r\n\n" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", - "source": [ - "n_samples = 30 # nb samples\r\n\r\nmu_s = np.array([0, 0])\r\ncov_s = np.array([[1, 0], [0, 1]])\r\n\r\nmu_t = np.array([4, 4, 4])\r\ncov_t = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])\r\n\r\n\r\nxs = ot.datasets.get_2D_samples_gauss(n_samples, mu_s, cov_s)\r\nP = sp.linalg.sqrtm(cov_t)\r\nxt = np.random.randn(n_samples, 3).dot(P) + mu_t" - ], - "outputs": [], + "execution_count": null, "metadata": { "collapsed": false - } - }, - { + }, + "outputs": [], "source": [ - "Plotting the distributions\r\n--------------------------\r\n\n" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", - "source": [ - "fig = pl.figure()\r\nax1 = fig.add_subplot(121)\r\nax1.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\r\nax2 = fig.add_subplot(122, projection='3d')\r\nax2.scatter(xt[:, 0], xt[:, 1], xt[:, 2], color='r')\r\npl.show()" - ], - "outputs": [], - "metadata": { - "collapsed": false - } - }, + "%matplotlib inline" + ], + "cell_type": "code" + }, { + "metadata": {}, "source": [ - "Compute distance kernels, normalize them and then display\r\n---------------------------------------------------------\r\n\n" - ], - "cell_type": "markdown", - "metadata": {} - }, + "\n# Gromov-Wasserstein example\n\n\nThis example is designed to show how to use the Gromov-Wassertsein distance\ncomputation in POT.\n\n" + ], + "cell_type": "markdown" + }, { - "execution_count": null, - "cell_type": "code", - "source": [ - "C1 = sp.spatial.distance.cdist(xs, xs)\r\nC2 = sp.spatial.distance.cdist(xt, xt)\r\n\r\nC1 /= C1.max()\r\nC2 /= C2.max()\r\n\r\npl.figure()\r\npl.subplot(121)\r\npl.imshow(C1)\r\npl.subplot(122)\r\npl.imshow(C2)\r\npl.show()" - ], - "outputs": [], + "execution_count": null, "metadata": { "collapsed": false - } - }, - { + }, + "outputs": [], "source": [ - "Compute Gromov-Wasserstein plans and distance\r\n---------------------------------------------\r\n\n" - ], - "cell_type": "markdown", - "metadata": {} - }, - { - "execution_count": null, - "cell_type": "code", - "source": [ - "p = ot.unif(n_samples)\r\nq = ot.unif(n_samples)\r\n\r\ngw = ot.gromov_wasserstein(C1, C2, p, q, 'square_loss', epsilon=5e-4)\r\ngw_dist = ot.gromov_wasserstein2(C1, C2, p, q, 'square_loss', epsilon=5e-4)\r\n\r\nprint('Gromov-Wasserstein distances between the distribution: ' + str(gw_dist))\r\n\r\npl.figure()\r\npl.imshow(gw, cmap='jet')\r\npl.colorbar()\r\npl.show()" - ], - "outputs": [], - "metadata": { - "collapsed": false - } + "# Author: Erwan Vautier \n# Nicolas Courty \n#\n# License: MIT License\n\nimport scipy as sp\nimport numpy as np\nimport matplotlib.pylab as pl\nfrom mpl_toolkits.mplot3d import Axes3D # noqa\nimport ot\n\n\n#\n# Sample two Gaussian distributions (2D and 3D)\n# ---------------------------------------------\n#\n# The Gromov-Wasserstein distance allows to compute distances with samples that\n# do not belong to the same metric space. For demonstration purpose, we sample\n# two Gaussian distributions in 2- and 3-dimensional spaces.\n\n\nn_samples = 30 # nb samples\n\nmu_s = np.array([0, 0])\ncov_s = np.array([[1, 0], [0, 1]])\n\nmu_t = np.array([4, 4, 4])\ncov_t = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])\n\n\nxs = ot.datasets.get_2D_samples_gauss(n_samples, mu_s, cov_s)\nP = sp.linalg.sqrtm(cov_t)\nxt = np.random.randn(n_samples, 3).dot(P) + mu_t\n\n\n#\n# Plotting the distributions\n# --------------------------\n\n\nfig = pl.figure()\nax1 = fig.add_subplot(121)\nax1.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\nax2 = fig.add_subplot(122, projection='3d')\nax2.scatter(xt[:, 0], xt[:, 1], xt[:, 2], color='r')\npl.show()\n\n\n#\n# Compute distance kernels, normalize them and then display\n# ---------------------------------------------------------\n\n\nC1 = sp.spatial.distance.cdist(xs, xs)\nC2 = sp.spatial.distance.cdist(xt, xt)\n\nC1 /= C1.max()\nC2 /= C2.max()\n\npl.figure()\npl.subplot(121)\npl.imshow(C1)\npl.subplot(122)\npl.imshow(C2)\npl.show()\n\n#\n# Compute Gromov-Wasserstein plans and distance\n# ---------------------------------------------\n\np = ot.unif(n_samples)\nq = ot.unif(n_samples)\n\ngw0, log0 = ot.gromov.gromov_wasserstein(\n C1, C2, p, q, 'square_loss', verbose=True, log=True)\n\ngw, log = ot.gromov.entropic_gromov_wasserstein(\n C1, C2, p, q, 'square_loss', epsilon=5e-4, log=True, verbose=True)\n\n\nprint('Gromov-Wasserstein distances: ' + str(log0['gw_dist']))\nprint('Entropic Gromov-Wasserstein distances: ' + str(log['gw_dist']))\n\n\npl.figure(1, (10, 5))\n\npl.subplot(1, 2, 1)\npl.imshow(gw0, cmap='jet')\npl.title('Gromov Wasserstein')\n\npl.subplot(1, 2, 2)\npl.imshow(gw, cmap='jet')\npl.title('Entropic Gromov Wasserstein')\n\npl.show()" + ], + "cell_type": "code" } - ], + ], "metadata": { - "kernelspec": { - "display_name": "Python 2", - "name": "python2", - "language": "python" - }, "language_info": { - "mimetype": "text/x-python", - "nbconvert_exporter": "python", - "name": "python", - "file_extension": ".py", - "version": "2.7.12", - "pygments_lexer": "ipython2", + "name": "python", "codemirror_mode": { - "version": 2, - "name": "ipython" - } + "name": "ipython", + "version": 3 + }, + "nbconvert_exporter": "python", + "version": "3.5.2", + "pygments_lexer": "ipython3", + "file_extension": ".py", + "mimetype": "text/x-python" + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3", + "language": "python" } - } + }, + "nbformat_minor": 0, + "nbformat": 4 } \ No newline at end of file -- cgit v1.2.3