From b5e45bbc83fd8cd8c1634a78f2f983d1cf28af73 Mon Sep 17 00:00:00 2001 From: RĂ©mi Flamary Date: Wed, 30 May 2018 09:58:51 +0200 Subject: update examples and notebooks --- .../auto_examples/plot_otda_linear_mapping.ipynb | 180 +++++++++++++++++++++ 1 file changed, 180 insertions(+) create mode 100644 docs/source/auto_examples/plot_otda_linear_mapping.ipynb (limited to 'docs/source/auto_examples/plot_otda_linear_mapping.ipynb') diff --git a/docs/source/auto_examples/plot_otda_linear_mapping.ipynb b/docs/source/auto_examples/plot_otda_linear_mapping.ipynb new file mode 100644 index 0000000..e43bee7 --- /dev/null +++ b/docs/source/auto_examples/plot_otda_linear_mapping.ipynb @@ -0,0 +1,180 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\nCreated on Tue Mar 20 14:31:15 2018\n\n@author: rflamary\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np\nimport pylab as pl\nimport ot" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generate data\n-------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "n = 1000\nd = 2\nsigma = .1\n\n# source samples\nangles = np.random.rand(n, 1) * 2 * np.pi\nxs = np.concatenate((np.sin(angles), np.cos(angles)),\n axis=1) + sigma * np.random.randn(n, 2)\nxs[:n // 2, 1] += 2\n\n\n# target samples\nanglet = np.random.rand(n, 1) * 2 * np.pi\nxt = np.concatenate((np.sin(anglet), np.cos(anglet)),\n axis=1) + sigma * np.random.randn(n, 2)\nxt[:n // 2, 1] += 2\n\n\nA = np.array([[1.5, .7], [.7, 1.5]])\nb = np.array([[4, 2]])\nxt = xt.dot(A) + b" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot data\n---------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pl.figure(1, (5, 5))\npl.plot(xs[:, 0], xs[:, 1], '+')\npl.plot(xt[:, 0], xt[:, 1], 'o')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Estimate linear mapping and transport\n-------------------------------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "Ae, be = ot.da.OT_mapping_linear(xs, xt)\n\nxst = xs.dot(Ae) + be" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot transported samples\n------------------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pl.figure(1, (5, 5))\npl.clf()\npl.plot(xs[:, 0], xs[:, 1], '+')\npl.plot(xt[:, 0], xt[:, 1], 'o')\npl.plot(xst[:, 0], xst[:, 1], '+')\n\npl.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Load image data\n---------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def im2mat(I):\n \"\"\"Converts and image to matrix (one pixel per line)\"\"\"\n return I.reshape((I.shape[0] * I.shape[1], I.shape[2]))\n\n\ndef mat2im(X, shape):\n \"\"\"Converts back a matrix to an image\"\"\"\n return X.reshape(shape)\n\n\ndef minmax(I):\n return np.clip(I, 0, 1)\n\n\n# Loading images\nI1 = pl.imread('../data/ocean_day.jpg').astype(np.float64) / 256\nI2 = pl.imread('../data/ocean_sunset.jpg').astype(np.float64) / 256\n\n\nX1 = im2mat(I1)\nX2 = im2mat(I2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Estimate mapping and adapt\n----------------------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "mapping = ot.da.LinearTransport()\n\nmapping.fit(Xs=X1, Xt=X2)\n\n\nxst = mapping.transform(Xs=X1)\nxts = mapping.inverse_transform(Xt=X2)\n\nI1t = minmax(mat2im(xst, I1.shape))\nI2t = minmax(mat2im(xts, I2.shape))\n\n# %%" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot transformed images\n-----------------------\n\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "pl.figure(2, figsize=(10, 7))\n\npl.subplot(2, 2, 1)\npl.imshow(I1)\npl.axis('off')\npl.title('Im. 1')\n\npl.subplot(2, 2, 2)\npl.imshow(I2)\npl.axis('off')\npl.title('Im. 2')\n\npl.subplot(2, 2, 3)\npl.imshow(I1t)\npl.axis('off')\npl.title('Mapping Im. 1')\n\npl.subplot(2, 2, 4)\npl.imshow(I2t)\npl.axis('off')\npl.title('Inverse mapping Im. 2')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file -- cgit v1.2.3