From a54775103541ea37f54269de1ba1e1396a6d7b30 Mon Sep 17 00:00:00 2001 From: RĂ©mi Flamary Date: Fri, 24 Apr 2020 17:32:57 +0200 Subject: exmaples in sections --- examples/domain-adaptation/plot_otda_laplacian.py | 127 ++++++++++++++++++++++ 1 file changed, 127 insertions(+) create mode 100644 examples/domain-adaptation/plot_otda_laplacian.py (limited to 'examples/domain-adaptation/plot_otda_laplacian.py') diff --git a/examples/domain-adaptation/plot_otda_laplacian.py b/examples/domain-adaptation/plot_otda_laplacian.py new file mode 100644 index 0000000..67c8f67 --- /dev/null +++ b/examples/domain-adaptation/plot_otda_laplacian.py @@ -0,0 +1,127 @@ +# -*- coding: utf-8 -*- +""" +====================================================== +OT with Laplacian regularization for domain adaptation +====================================================== + +This example introduces a domain adaptation in a 2D setting and OTDA +approach with Laplacian regularization. + +""" + +# Authors: Ievgen Redko + +# License: MIT License + +import matplotlib.pylab as pl +import ot + +############################################################################## +# Generate data +# ------------- + +n_source_samples = 150 +n_target_samples = 150 + +Xs, ys = ot.datasets.make_data_classif('3gauss', n_source_samples) +Xt, yt = ot.datasets.make_data_classif('3gauss2', n_target_samples) + + +############################################################################## +# Instantiate the different transport algorithms and fit them +# ----------------------------------------------------------- + +# EMD Transport +ot_emd = ot.da.EMDTransport() +ot_emd.fit(Xs=Xs, Xt=Xt) + +# Sinkhorn Transport +ot_sinkhorn = ot.da.SinkhornTransport(reg_e=.01) +ot_sinkhorn.fit(Xs=Xs, Xt=Xt) + +# EMD Transport with Laplacian regularization +ot_emd_laplace = ot.da.EMDLaplaceTransport(reg_lap=100, reg_src=1) +ot_emd_laplace.fit(Xs=Xs, Xt=Xt) + +# transport source samples onto target samples +transp_Xs_emd = ot_emd.transform(Xs=Xs) +transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=Xs) +transp_Xs_emd_laplace = ot_emd_laplace.transform(Xs=Xs) + +############################################################################## +# Fig 1 : plots source and target samples +# --------------------------------------- + +pl.figure(1, figsize=(10, 5)) +pl.subplot(1, 2, 1) +pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples') +pl.xticks([]) +pl.yticks([]) +pl.legend(loc=0) +pl.title('Source samples') + +pl.subplot(1, 2, 2) +pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples') +pl.xticks([]) +pl.yticks([]) +pl.legend(loc=0) +pl.title('Target samples') +pl.tight_layout() + + +############################################################################## +# Fig 2 : plot optimal couplings and transported samples +# ------------------------------------------------------ + +param_img = {'interpolation': 'nearest'} + +pl.figure(2, figsize=(15, 8)) +pl.subplot(2, 3, 1) +pl.imshow(ot_emd.coupling_, **param_img) +pl.xticks([]) +pl.yticks([]) +pl.title('Optimal coupling\nEMDTransport') + +pl.figure(2, figsize=(15, 8)) +pl.subplot(2, 3, 2) +pl.imshow(ot_sinkhorn.coupling_, **param_img) +pl.xticks([]) +pl.yticks([]) +pl.title('Optimal coupling\nSinkhornTransport') + +pl.subplot(2, 3, 3) +pl.imshow(ot_emd_laplace.coupling_, **param_img) +pl.xticks([]) +pl.yticks([]) +pl.title('Optimal coupling\nEMDLaplaceTransport') + +pl.subplot(2, 3, 4) +pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', + label='Target samples', alpha=0.3) +pl.scatter(transp_Xs_emd[:, 0], transp_Xs_emd[:, 1], c=ys, + marker='+', label='Transp samples', s=30) +pl.xticks([]) +pl.yticks([]) +pl.title('Transported samples\nEmdTransport') +pl.legend(loc="lower left") + +pl.subplot(2, 3, 5) +pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', + label='Target samples', alpha=0.3) +pl.scatter(transp_Xs_sinkhorn[:, 0], transp_Xs_sinkhorn[:, 1], c=ys, + marker='+', label='Transp samples', s=30) +pl.xticks([]) +pl.yticks([]) +pl.title('Transported samples\nSinkhornTransport') + +pl.subplot(2, 3, 6) +pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', + label='Target samples', alpha=0.3) +pl.scatter(transp_Xs_emd_laplace[:, 0], transp_Xs_emd_laplace[:, 1], c=ys, + marker='+', label='Transp samples', s=30) +pl.xticks([]) +pl.yticks([]) +pl.title('Transported samples\nEMDLaplaceTransport') +pl.tight_layout() + +pl.show() -- cgit v1.2.3