From a54775103541ea37f54269de1ba1e1396a6d7b30 Mon Sep 17 00:00:00 2001 From: RĂ©mi Flamary Date: Fri, 24 Apr 2020 17:32:57 +0200 Subject: exmaples in sections --- examples/domain-adaptation/plot_otda_mapping.py | 127 ++++++++++++++++++++++++ 1 file changed, 127 insertions(+) create mode 100644 examples/domain-adaptation/plot_otda_mapping.py (limited to 'examples/domain-adaptation/plot_otda_mapping.py') diff --git a/examples/domain-adaptation/plot_otda_mapping.py b/examples/domain-adaptation/plot_otda_mapping.py new file mode 100644 index 0000000..ded2bdf --- /dev/null +++ b/examples/domain-adaptation/plot_otda_mapping.py @@ -0,0 +1,127 @@ +# -*- coding: utf-8 -*- +""" +=========================================== +OT mapping estimation for domain adaptation +=========================================== + +This example presents how to use MappingTransport to estimate at the same +time both the coupling transport and approximate the transport map with either +a linear or a kernelized mapping as introduced in [8]. + +[8] M. Perrot, N. Courty, R. Flamary, A. Habrard, + "Mapping estimation for discrete optimal transport", + Neural Information Processing Systems (NIPS), 2016. +""" + +# Authors: Remi Flamary +# Stanislas Chambon +# +# License: MIT License + +# sphinx_gallery_thumbnail_number = 2 + +import numpy as np +import matplotlib.pylab as pl +import ot + + +############################################################################## +# Generate data +# ------------- + +n_source_samples = 100 +n_target_samples = 100 +theta = 2 * np.pi / 20 +noise_level = 0.1 + +Xs, ys = ot.datasets.make_data_classif( + 'gaussrot', n_source_samples, nz=noise_level) +Xs_new, _ = ot.datasets.make_data_classif( + 'gaussrot', n_source_samples, nz=noise_level) +Xt, yt = ot.datasets.make_data_classif( + 'gaussrot', n_target_samples, theta=theta, nz=noise_level) + +# one of the target mode changes its variance (no linear mapping) +Xt[yt == 2] *= 3 +Xt = Xt + 4 + +############################################################################## +# Plot data +# --------- + +pl.figure(1, (10, 5)) +pl.clf() +pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples') +pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples') +pl.legend(loc=0) +pl.title('Source and target distributions') + + +############################################################################## +# Instantiate the different transport algorithms and fit them +# ----------------------------------------------------------- + +# MappingTransport with linear kernel +ot_mapping_linear = ot.da.MappingTransport( + kernel="linear", mu=1e0, eta=1e-8, bias=True, + max_iter=20, verbose=True) + +ot_mapping_linear.fit(Xs=Xs, Xt=Xt) + +# for original source samples, transform applies barycentric mapping +transp_Xs_linear = ot_mapping_linear.transform(Xs=Xs) + +# for out of source samples, transform applies the linear mapping +transp_Xs_linear_new = ot_mapping_linear.transform(Xs=Xs_new) + + +# MappingTransport with gaussian kernel +ot_mapping_gaussian = ot.da.MappingTransport( + kernel="gaussian", eta=1e-5, mu=1e-1, bias=True, sigma=1, + max_iter=10, verbose=True) +ot_mapping_gaussian.fit(Xs=Xs, Xt=Xt) + +# for original source samples, transform applies barycentric mapping +transp_Xs_gaussian = ot_mapping_gaussian.transform(Xs=Xs) + +# for out of source samples, transform applies the gaussian mapping +transp_Xs_gaussian_new = ot_mapping_gaussian.transform(Xs=Xs_new) + + +############################################################################## +# Plot transported samples +# ------------------------ + +pl.figure(2) +pl.clf() +pl.subplot(2, 2, 1) +pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', + label='Target samples', alpha=.2) +pl.scatter(transp_Xs_linear[:, 0], transp_Xs_linear[:, 1], c=ys, marker='+', + label='Mapped source samples') +pl.title("Bary. mapping (linear)") +pl.legend(loc=0) + +pl.subplot(2, 2, 2) +pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', + label='Target samples', alpha=.2) +pl.scatter(transp_Xs_linear_new[:, 0], transp_Xs_linear_new[:, 1], + c=ys, marker='+', label='Learned mapping') +pl.title("Estim. mapping (linear)") + +pl.subplot(2, 2, 3) +pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', + label='Target samples', alpha=.2) +pl.scatter(transp_Xs_gaussian[:, 0], transp_Xs_gaussian[:, 1], c=ys, + marker='+', label='barycentric mapping') +pl.title("Bary. mapping (kernel)") + +pl.subplot(2, 2, 4) +pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', + label='Target samples', alpha=.2) +pl.scatter(transp_Xs_gaussian_new[:, 0], transp_Xs_gaussian_new[:, 1], c=ys, + marker='+', label='Learned mapping') +pl.title("Estim. mapping (kernel)") +pl.tight_layout() + +pl.show() -- cgit v1.2.3