From a54775103541ea37f54269de1ba1e1396a6d7b30 Mon Sep 17 00:00:00 2001 From: RĂ©mi Flamary Date: Fri, 24 Apr 2020 17:32:57 +0200 Subject: exmaples in sections --- examples/gromov/plot_barycenter_fgw.py | 184 +++++++++++++++++++++++++++++++++ 1 file changed, 184 insertions(+) create mode 100644 examples/gromov/plot_barycenter_fgw.py (limited to 'examples/gromov/plot_barycenter_fgw.py') diff --git a/examples/gromov/plot_barycenter_fgw.py b/examples/gromov/plot_barycenter_fgw.py new file mode 100644 index 0000000..77b0370 --- /dev/null +++ b/examples/gromov/plot_barycenter_fgw.py @@ -0,0 +1,184 @@ +# -*- coding: utf-8 -*- +""" +================================= +Plot graphs' barycenter using FGW +================================= + +This example illustrates the computation barycenter of labeled graphs using FGW + +Requires networkx >=2 + +.. [18] Vayer Titouan, Chapel Laetitia, Flamary R{\'e}mi, Tavenard Romain + and Courty Nicolas + "Optimal Transport for structured data with application on graphs" + International Conference on Machine Learning (ICML). 2019. + +""" + +# Author: Titouan Vayer +# +# License: MIT License + +#%% load libraries +import numpy as np +import matplotlib.pyplot as plt +import networkx as nx +import math +from scipy.sparse.csgraph import shortest_path +import matplotlib.colors as mcol +from matplotlib import cm +from ot.gromov import fgw_barycenters +#%% Graph functions + + +def find_thresh(C, inf=0.5, sup=3, step=10): + """ Trick to find the adequate thresholds from where value of the C matrix are considered close enough to say that nodes are connected + Tthe threshold is found by a linesearch between values "inf" and "sup" with "step" thresholds tested. + The optimal threshold is the one which minimizes the reconstruction error between the shortest_path matrix coming from the thresholded adjency matrix + and the original matrix. + Parameters + ---------- + C : ndarray, shape (n_nodes,n_nodes) + The structure matrix to threshold + inf : float + The beginning of the linesearch + sup : float + The end of the linesearch + step : integer + Number of thresholds tested + """ + dist = [] + search = np.linspace(inf, sup, step) + for thresh in search: + Cprime = sp_to_adjency(C, 0, thresh) + SC = shortest_path(Cprime, method='D') + SC[SC == float('inf')] = 100 + dist.append(np.linalg.norm(SC - C)) + return search[np.argmin(dist)], dist + + +def sp_to_adjency(C, threshinf=0.2, threshsup=1.8): + """ Thresholds the structure matrix in order to compute an adjency matrix. + All values between threshinf and threshsup are considered representing connected nodes and set to 1. Else are set to 0 + Parameters + ---------- + C : ndarray, shape (n_nodes,n_nodes) + The structure matrix to threshold + threshinf : float + The minimum value of distance from which the new value is set to 1 + threshsup : float + The maximum value of distance from which the new value is set to 1 + Returns + ------- + C : ndarray, shape (n_nodes,n_nodes) + The threshold matrix. Each element is in {0,1} + """ + H = np.zeros_like(C) + np.fill_diagonal(H, np.diagonal(C)) + C = C - H + C = np.minimum(np.maximum(C, threshinf), threshsup) + C[C == threshsup] = 0 + C[C != 0] = 1 + + return C + + +def build_noisy_circular_graph(N=20, mu=0, sigma=0.3, with_noise=False, structure_noise=False, p=None): + """ Create a noisy circular graph + """ + g = nx.Graph() + g.add_nodes_from(list(range(N))) + for i in range(N): + noise = float(np.random.normal(mu, sigma, 1)) + if with_noise: + g.add_node(i, attr_name=math.sin((2 * i * math.pi / N)) + noise) + else: + g.add_node(i, attr_name=math.sin(2 * i * math.pi / N)) + g.add_edge(i, i + 1) + if structure_noise: + randomint = np.random.randint(0, p) + if randomint == 0: + if i <= N - 3: + g.add_edge(i, i + 2) + if i == N - 2: + g.add_edge(i, 0) + if i == N - 1: + g.add_edge(i, 1) + g.add_edge(N, 0) + noise = float(np.random.normal(mu, sigma, 1)) + if with_noise: + g.add_node(N, attr_name=math.sin((2 * N * math.pi / N)) + noise) + else: + g.add_node(N, attr_name=math.sin(2 * N * math.pi / N)) + return g + + +def graph_colors(nx_graph, vmin=0, vmax=7): + cnorm = mcol.Normalize(vmin=vmin, vmax=vmax) + cpick = cm.ScalarMappable(norm=cnorm, cmap='viridis') + cpick.set_array([]) + val_map = {} + for k, v in nx.get_node_attributes(nx_graph, 'attr_name').items(): + val_map[k] = cpick.to_rgba(v) + colors = [] + for node in nx_graph.nodes(): + colors.append(val_map[node]) + return colors + +############################################################################## +# Generate data +# ------------- + +#%% circular dataset +# We build a dataset of noisy circular graphs. +# Noise is added on the structures by random connections and on the features by gaussian noise. + + +np.random.seed(30) +X0 = [] +for k in range(9): + X0.append(build_noisy_circular_graph(np.random.randint(15, 25), with_noise=True, structure_noise=True, p=3)) + +############################################################################## +# Plot data +# --------- + +#%% Plot graphs + +plt.figure(figsize=(8, 10)) +for i in range(len(X0)): + plt.subplot(3, 3, i + 1) + g = X0[i] + pos = nx.kamada_kawai_layout(g) + nx.draw(g, pos=pos, node_color=graph_colors(g, vmin=-1, vmax=1), with_labels=False, node_size=100) +plt.suptitle('Dataset of noisy graphs. Color indicates the label', fontsize=20) +plt.show() + +############################################################################## +# Barycenter computation +# ---------------------- + +#%% We compute the barycenter using FGW. Structure matrices are computed using the shortest_path distance in the graph +# Features distances are the euclidean distances +Cs = [shortest_path(nx.adjacency_matrix(x)) for x in X0] +ps = [np.ones(len(x.nodes())) / len(x.nodes()) for x in X0] +Ys = [np.array([v for (k, v) in nx.get_node_attributes(x, 'attr_name').items()]).reshape(-1, 1) for x in X0] +lambdas = np.array([np.ones(len(Ys)) / len(Ys)]).ravel() +sizebary = 15 # we choose a barycenter with 15 nodes + +A, C, log = fgw_barycenters(sizebary, Ys, Cs, ps, lambdas, alpha=0.95, log=True) + +############################################################################## +# Plot Barycenter +# ------------------------- + +#%% Create the barycenter +bary = nx.from_numpy_matrix(sp_to_adjency(C, threshinf=0, threshsup=find_thresh(C, sup=100, step=100)[0])) +for i, v in enumerate(A.ravel()): + bary.add_node(i, attr_name=v) + +#%% +pos = nx.kamada_kawai_layout(bary) +nx.draw(bary, pos=pos, node_color=graph_colors(bary, vmin=-1, vmax=1), with_labels=False) +plt.suptitle('Barycenter', fontsize=20) +plt.show() -- cgit v1.2.3