From fa989062c17f87bd96aa58ad764fd3791ea11e22 Mon Sep 17 00:00:00 2001 From: tvayer Date: Wed, 29 May 2019 15:00:50 +0200 Subject: Reame +pep8 --- examples/plot_barycenter_fgw.py | 150 ++++++++++++++++++++-------------------- 1 file changed, 75 insertions(+), 75 deletions(-) (limited to 'examples/plot_barycenter_fgw.py') diff --git a/examples/plot_barycenter_fgw.py b/examples/plot_barycenter_fgw.py index f416629..9eea036 100644 --- a/examples/plot_barycenter_fgw.py +++ b/examples/plot_barycenter_fgw.py @@ -30,10 +30,11 @@ from matplotlib import cm from ot.gromov import fgw_barycenters #%% Graph functions -def find_thresh(C,inf=0.5,sup=3,step=10): + +def find_thresh(C, inf=0.5, sup=3, step=10): """ Trick to find the adequate thresholds from where value of the C matrix are considered close enough to say that nodes are connected - Tthe threshold is found by a linesearch between values "inf" and "sup" with "step" thresholds tested. - The optimal threshold is the one which minimizes the reconstruction error between the shortest_path matrix coming from the thresholded adjency matrix + Tthe threshold is found by a linesearch between values "inf" and "sup" with "step" thresholds tested. + The optimal threshold is the one which minimizes the reconstruction error between the shortest_path matrix coming from the thresholded adjency matrix and the original matrix. Parameters ---------- @@ -43,21 +44,22 @@ def find_thresh(C,inf=0.5,sup=3,step=10): The beginning of the linesearch sup : float The end of the linesearch - step : integer - Number of thresholds tested + step : integer + Number of thresholds tested """ - dist=[] - search=np.linspace(inf,sup,step) + dist = [] + search = np.linspace(inf, sup, step) for thresh in search: - Cprime=sp_to_adjency(C,0,thresh) - SC=shortest_path(Cprime,method='D') - SC[SC==float('inf')]=100 - dist.append(np.linalg.norm(SC-C)) - return search[np.argmin(dist)],dist - -def sp_to_adjency(C,threshinf=0.2,threshsup=1.8): - """ Thresholds the structure matrix in order to compute an adjency matrix. - All values between threshinf and threshsup are considered representing connected nodes and set to 1. Else are set to 0 + Cprime = sp_to_adjency(C, 0, thresh) + SC = shortest_path(Cprime, method='D') + SC[SC == float('inf')] = 100 + dist.append(np.linalg.norm(SC - C)) + return search[np.argmin(dist)], dist + + +def sp_to_adjency(C, threshinf=0.2, threshsup=1.8): + """ Thresholds the structure matrix in order to compute an adjency matrix. + All values between threshinf and threshsup are considered representing connected nodes and set to 1. Else are set to 0 Parameters ---------- C : ndarray, shape (n_nodes,n_nodes) @@ -71,102 +73,100 @@ def sp_to_adjency(C,threshinf=0.2,threshsup=1.8): C : ndarray, shape (n_nodes,n_nodes) The threshold matrix. Each element is in {0,1} """ - H=np.zeros_like(C) - np.fill_diagonal(H,np.diagonal(C)) - C=C-H - C=np.minimum(np.maximum(C,threshinf),threshsup) - C[C==threshsup]=0 - C[C!=0]=1 - - return C - -def build_noisy_circular_graph(N=20,mu=0,sigma=0.3,with_noise=False,structure_noise=False,p=None): + H = np.zeros_like(C) + np.fill_diagonal(H, np.diagonal(C)) + C = C - H + C = np.minimum(np.maximum(C, threshinf), threshsup) + C[C == threshsup] = 0 + C[C != 0] = 1 + + return C + + +def build_noisy_circular_graph(N=20, mu=0, sigma=0.3, with_noise=False, structure_noise=False, p=None): """ Create a noisy circular graph """ - g=nx.Graph() + g = nx.Graph() g.add_nodes_from(list(range(N))) for i in range(N): - noise=float(np.random.normal(mu,sigma,1)) + noise = float(np.random.normal(mu, sigma, 1)) if with_noise: - g.add_node(i,attr_name=math.sin((2*i*math.pi/N))+noise) + g.add_node(i, attr_name=math.sin((2 * i * math.pi / N)) + noise) else: - g.add_node(i,attr_name=math.sin(2*i*math.pi/N)) - g.add_edge(i,i+1) + g.add_node(i, attr_name=math.sin(2 * i * math.pi / N)) + g.add_edge(i, i + 1) if structure_noise: - randomint=np.random.randint(0,p) - if randomint==0: - if i<=N-3: - g.add_edge(i,i+2) - if i==N-2: - g.add_edge(i,0) - if i==N-1: - g.add_edge(i,1) - g.add_edge(N,0) - noise=float(np.random.normal(mu,sigma,1)) + randomint = np.random.randint(0, p) + if randomint == 0: + if i <= N - 3: + g.add_edge(i, i + 2) + if i == N - 2: + g.add_edge(i, 0) + if i == N - 1: + g.add_edge(i, 1) + g.add_edge(N, 0) + noise = float(np.random.normal(mu, sigma, 1)) if with_noise: - g.add_node(N,attr_name=math.sin((2*N*math.pi/N))+noise) + g.add_node(N, attr_name=math.sin((2 * N * math.pi / N)) + noise) else: - g.add_node(N,attr_name=math.sin(2*N*math.pi/N)) + g.add_node(N, attr_name=math.sin(2 * N * math.pi / N)) return g -def graph_colors(nx_graph,vmin=0,vmax=7): - cnorm = mcol.Normalize(vmin=vmin,vmax=vmax) - cpick = cm.ScalarMappable(norm=cnorm,cmap='viridis') + +def graph_colors(nx_graph, vmin=0, vmax=7): + cnorm = mcol.Normalize(vmin=vmin, vmax=vmax) + cpick = cm.ScalarMappable(norm=cnorm, cmap='viridis') cpick.set_array([]) val_map = {} - for k,v in nx.get_node_attributes(nx_graph,'attr_name').items(): - val_map[k]=cpick.to_rgba(v) - colors=[] + for k, v in nx.get_node_attributes(nx_graph, 'attr_name').items(): + val_map[k] = cpick.to_rgba(v) + colors = [] for node in nx_graph.nodes(): colors.append(val_map[node]) return colors - + #%% create dataset # We build a dataset of noisy circular graphs. # Noise is added on the structures by random connections and on the features by gaussian noise. + np.random.seed(30) -X0=[] +X0 = [] for k in range(9): - X0.append(build_noisy_circular_graph(np.random.randint(15,25),with_noise=True,structure_noise=True,p=3)) - + X0.append(build_noisy_circular_graph(np.random.randint(15, 25), with_noise=True, structure_noise=True, p=3)) + #%% Plot dataset -plt.figure(figsize=(8,10)) +plt.figure(figsize=(8, 10)) for i in range(len(X0)): - plt.subplot(3,3,i+1) - g=X0[i] - pos=nx.kamada_kawai_layout(g) - nx.draw(g,pos=pos,node_color = graph_colors(g,vmin=-1,vmax=1),with_labels=False,node_size=100) -plt.suptitle('Dataset of noisy graphs. Color indicates the label',fontsize=20) + plt.subplot(3, 3, i + 1) + g = X0[i] + pos = nx.kamada_kawai_layout(g) + nx.draw(g, pos=pos, node_color=graph_colors(g, vmin=-1, vmax=1), with_labels=False, node_size=100) +plt.suptitle('Dataset of noisy graphs. Color indicates the label', fontsize=20) plt.show() - #%% # We compute the barycenter using FGW. Structure matrices are computed using the shortest_path distance in the graph # Features distances are the euclidean distances -Cs=[shortest_path(nx.adjacency_matrix(x)) for x in X0] -ps=[np.ones(len(x.nodes()))/len(x.nodes()) for x in X0] -Ys=[np.array([v for (k,v) in nx.get_node_attributes(x,'attr_name').items()]).reshape(-1,1) for x in X0] -lambdas=np.array([np.ones(len(Ys))/len(Ys)]).ravel() -sizebary=15 # we choose a barycenter with 15 nodes +Cs = [shortest_path(nx.adjacency_matrix(x)) for x in X0] +ps = [np.ones(len(x.nodes())) / len(x.nodes()) for x in X0] +Ys = [np.array([v for (k, v) in nx.get_node_attributes(x, 'attr_name').items()]).reshape(-1, 1) for x in X0] +lambdas = np.array([np.ones(len(Ys)) / len(Ys)]).ravel() +sizebary = 15 # we choose a barycenter with 15 nodes #%% -A,C,log=fgw_barycenters(sizebary,Ys,Cs,ps,lambdas,alpha=0.95) +A, C, log = fgw_barycenters(sizebary, Ys, Cs, ps, lambdas, alpha=0.95) #%% -bary=nx.from_numpy_matrix(sp_to_adjency(C,threshinf=0,threshsup=find_thresh(C,sup=100,step=100)[0])) +bary = nx.from_numpy_matrix(sp_to_adjency(C, threshinf=0, threshsup=find_thresh(C, sup=100, step=100)[0])) for i in range(len(A.ravel())): - bary.add_node(i,attr_name=float(A.ravel()[i])) - + bary.add_node(i, attr_name=float(A.ravel()[i])) + #%% pos = nx.kamada_kawai_layout(bary) -nx.draw(bary,pos=pos,node_color = graph_colors(bary,vmin=-1,vmax=1),with_labels=False) -plt.suptitle('Barycenter',fontsize=20) +nx.draw(bary, pos=pos, node_color=graph_colors(bary, vmin=-1, vmax=1), with_labels=False) +plt.suptitle('Barycenter', fontsize=20) plt.show() - - - - -- cgit v1.2.3