{ "nbformat_minor": 0, "nbformat": 4, "cells": [ { "execution_count": null, "cell_type": "code", "source": [ "%matplotlib inline" ], "outputs": [], "metadata": { "collapsed": false } }, { "source": [ "\n# 1D optimal transport\n\n\n@author: rflamary\n\n" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "import numpy as np\nimport matplotlib.pylab as pl\nimport ot\nfrom ot.datasets import get_1D_gauss as gauss\n\n\n#%% parameters\n\nn=100 # nb bins\n\n# bin positions\nx=np.arange(n,dtype=np.float64)\n\n# Gaussian distributions\na=gauss(n,m=20,s=5) # m= mean, s= std\nb=gauss(n,m=60,s=10)\n\n# loss matrix\nM=ot.dist(x.reshape((n,1)),x.reshape((n,1)))\nM/=M.max()\n\n#%% plot the distributions\n\npl.figure(1)\npl.plot(x,a,'b',label='Source distribution')\npl.plot(x,b,'r',label='Target distribution')\npl.legend()\n\n#%% plot distributions and loss matrix\n\npl.figure(2)\not.plot.plot1D_mat(a,b,M,'Cost matrix M')\n\n#%% EMD\n\nG0=ot.emd(a,b,M)\n\npl.figure(3)\not.plot.plot1D_mat(a,b,G0,'OT matrix G0')\n\n#%% Sinkhorn\n\nlambd=1e-3\nGs=ot.sinkhorn(a,b,M,lambd)\n\npl.figure(4)\not.plot.plot1D_mat(a,b,Gs,'OT matrix Sinkhorn')" ], "outputs": [], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 2", "name": "python2", "language": "python" }, "language_info": { "mimetype": "text/x-python", "nbconvert_exporter": "python", "name": "python", "file_extension": ".py", "version": "2.7.12", "pygments_lexer": "ipython2", "codemirror_mode": { "version": 2, "name": "ipython" } } } }