.. _sphx_glr_auto_examples_plot_OT_1D.py: ==================== 1D optimal transport ==================== @author: rflamary .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/images/sphx_glr_plot_OT_1D_001.png :scale: 47 * .. image:: /auto_examples/images/sphx_glr_plot_OT_1D_002.png :scale: 47 * .. image:: /auto_examples/images/sphx_glr_plot_OT_1D_003.png :scale: 47 * .. image:: /auto_examples/images/sphx_glr_plot_OT_1D_004.png :scale: 47 .. rst-class:: sphx-glr-script-out Out:: It. |Err ------------------- 0|8.187970e-02| 10|3.460174e-02| 20|6.633335e-03| 30|9.797798e-04| 40|1.389606e-04| 50|1.959016e-05| 60|2.759079e-06| 70|3.885166e-07| 80|5.470605e-08| 90|7.702918e-09| 100|1.084609e-09| 110|1.527180e-10| | .. code-block:: python import numpy as np import matplotlib.pylab as pl import ot from ot.datasets import get_1D_gauss as gauss #%% parameters n=100 # nb bins # bin positions x=np.arange(n,dtype=np.float64) # Gaussian distributions a=gauss(n,m=20,s=5) # m= mean, s= std b=gauss(n,m=60,s=10) # loss matrix M=ot.dist(x.reshape((n,1)),x.reshape((n,1))) M/=M.max() #%% plot the distributions pl.figure(1) pl.plot(x,a,'b',label='Source distribution') pl.plot(x,b,'r',label='Target distribution') pl.legend() #%% plot distributions and loss matrix pl.figure(2) ot.plot.plot1D_mat(a,b,M,'Cost matrix M') #%% EMD G0=ot.emd(a,b,M) pl.figure(3) ot.plot.plot1D_mat(a,b,G0,'OT matrix G0') #%% Sinkhorn lambd=1e-3 Gs=ot.sinkhorn(a,b,M,lambd,verbose=True) pl.figure(4) ot.plot.plot1D_mat(a,b,Gs,'OT matrix Sinkhorn') **Total running time of the script:** ( 0 minutes 0.674 seconds) .. container:: sphx-glr-footer .. container:: sphx-glr-download :download:`Download Python source code: plot_OT_1D.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: plot_OT_1D.ipynb ` .. rst-class:: sphx-glr-signature `Generated by Sphinx-Gallery `_