{ "nbformat_minor": 0, "nbformat": 4, "cells": [ { "execution_count": null, "cell_type": "code", "source": [ "%matplotlib inline" ], "outputs": [], "metadata": { "collapsed": false } }, { "source": [ "\n# 1D Wasserstein barycenter demo\n\n\n\n@author: rflamary\n\n" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "import numpy as np\nimport matplotlib.pylab as pl\nimport ot\nfrom mpl_toolkits.mplot3d import Axes3D #necessary for 3d plot even if not used\nfrom matplotlib.collections import PolyCollection\n\n\n#%% parameters\n\nn=100 # nb bins\n\n# bin positions\nx=np.arange(n,dtype=np.float64)\n\n# Gaussian distributions\na1=ot.datasets.get_1D_gauss(n,m=20,s=5) # m= mean, s= std\na2=ot.datasets.get_1D_gauss(n,m=60,s=8)\n\n# creating matrix A containing all distributions\nA=np.vstack((a1,a2)).T\nnbd=A.shape[1]\n\n# loss matrix + normalization\nM=ot.utils.dist0(n)\nM/=M.max()\n\n#%% plot the distributions\n\npl.figure(1)\nfor i in range(nbd):\n pl.plot(x,A[:,i])\npl.title('Distributions')\n\n#%% barycenter computation\n\nalpha=0.2 # 0<=alpha<=1\nweights=np.array([1-alpha,alpha])\n\n# l2bary\nbary_l2=A.dot(weights)\n\n# wasserstein\nreg=1e-3\nbary_wass=ot.bregman.barycenter(A,M,reg,weights)\n\npl.figure(2)\npl.clf()\npl.subplot(2,1,1)\nfor i in range(nbd):\n pl.plot(x,A[:,i])\npl.title('Distributions')\n\npl.subplot(2,1,2)\npl.plot(x,bary_l2,'r',label='l2')\npl.plot(x,bary_wass,'g',label='Wasserstein')\npl.legend()\npl.title('Barycenters')\n\n\n#%% barycenter interpolation\n\nnbalpha=11\nalphalist=np.linspace(0,1,nbalpha)\n\n\nB_l2=np.zeros((n,nbalpha))\n\nB_wass=np.copy(B_l2)\n\nfor i in range(0,nbalpha):\n alpha=alphalist[i]\n weights=np.array([1-alpha,alpha])\n B_l2[:,i]=A.dot(weights)\n B_wass[:,i]=ot.bregman.barycenter(A,M,reg,weights)\n\n#%% plot interpolation\n\npl.figure(3,(10,5))\n\n#pl.subplot(1,2,1)\ncmap=pl.cm.get_cmap('viridis')\nverts = []\nzs = alphalist\nfor i,z in enumerate(zs):\n ys = B_l2[:,i]\n verts.append(list(zip(x, ys)))\n\nax = pl.gcf().gca(projection='3d')\n\npoly = PolyCollection(verts,facecolors=[cmap(a) for a in alphalist])\npoly.set_alpha(0.7)\nax.add_collection3d(poly, zs=zs, zdir='y')\n\nax.set_xlabel('x')\nax.set_xlim3d(0, n)\nax.set_ylabel('$\\\\alpha$')\nax.set_ylim3d(0,1)\nax.set_zlabel('')\nax.set_zlim3d(0, B_l2.max()*1.01)\npl.title('Barycenter interpolation with l2')\n\npl.show()\n\npl.figure(4,(10,5))\n\n#pl.subplot(1,2,1)\ncmap=pl.cm.get_cmap('viridis')\nverts = []\nzs = alphalist\nfor i,z in enumerate(zs):\n ys = B_wass[:,i]\n verts.append(list(zip(x, ys)))\n\nax = pl.gcf().gca(projection='3d')\n\npoly = PolyCollection(verts,facecolors=[cmap(a) for a in alphalist])\npoly.set_alpha(0.7)\nax.add_collection3d(poly, zs=zs, zdir='y')\n\nax.set_xlabel('x')\nax.set_xlim3d(0, n)\nax.set_ylabel('$\\\\alpha$')\nax.set_ylim3d(0,1)\nax.set_zlabel('')\nax.set_zlim3d(0, B_l2.max()*1.01)\npl.title('Barycenter interpolation with Wasserstein')\n\npl.show()" ], "outputs": [], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 2", "name": "python2", "language": "python" }, "language_info": { "mimetype": "text/x-python", "nbconvert_exporter": "python", "name": "python", "file_extension": ".py", "version": "2.7.12", "pygments_lexer": "ipython2", "codemirror_mode": { "version": 2, "name": "ipython" } } } }