{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Plot multiple EMD\n\n\nShows how to compute multiple EMD and Sinkhorn with two differnt\nground metrics and plot their values for diffeent distributions.\n\n\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Author: Remi Flamary \n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\nimport ot\nfrom ot.datasets import make_1D_gauss as gauss" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Generate data\n-------------\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#%% parameters\n\nn = 100 # nb bins\nn_target = 50 # nb target distributions\n\n\n# bin positions\nx = np.arange(n, dtype=np.float64)\n\nlst_m = np.linspace(20, 90, n_target)\n\n# Gaussian distributions\na = gauss(n, m=20, s=5) # m= mean, s= std\n\nB = np.zeros((n, n_target))\n\nfor i, m in enumerate(lst_m):\n B[:, i] = gauss(n, m=m, s=5)\n\n# loss matrix and normalization\nM = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'euclidean')\nM /= M.max()\nM2 = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), 'sqeuclidean')\nM2 /= M2.max()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot data\n---------\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#%% plot the distributions\n\npl.figure(1)\npl.subplot(2, 1, 1)\npl.plot(x, a, 'b', label='Source distribution')\npl.title('Source distribution')\npl.subplot(2, 1, 2)\npl.plot(x, B, label='Target distributions')\npl.title('Target distributions')\npl.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compute EMD for the different losses\n------------------------------------\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#%% Compute and plot distributions and loss matrix\n\nd_emd = ot.emd2(a, B, M) # direct computation of EMD\nd_emd2 = ot.emd2(a, B, M2) # direct computation of EMD with loss M2\n\n\npl.figure(2)\npl.plot(d_emd, label='Euclidean EMD')\npl.plot(d_emd2, label='Squared Euclidean EMD')\npl.title('EMD distances')\npl.legend()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compute Sinkhorn for the different losses\n-----------------------------------------\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#%%\nreg = 1e-2\nd_sinkhorn = ot.sinkhorn2(a, B, M, reg)\nd_sinkhorn2 = ot.sinkhorn2(a, B, M2, reg)\n\npl.figure(2)\npl.clf()\npl.plot(d_emd, label='Euclidean EMD')\npl.plot(d_emd2, label='Squared Euclidean EMD')\npl.plot(d_sinkhorn, '+', label='Euclidean Sinkhorn')\npl.plot(d_sinkhorn2, '+', label='Squared Euclidean Sinkhorn')\npl.title('EMD distances')\npl.legend()\n\npl.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 0 }