.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_stochastic.py: ========================== Stochastic examples ========================== This example is designed to show how to use the stochatic optimization algorithms for descrete and semicontinous measures from the POT library. .. code-block:: default # Author: Kilian Fatras # # License: MIT License import matplotlib.pylab as pl import numpy as np import ot import ot.plot COMPUTE TRANSPORTATION MATRIX FOR SEMI-DUAL PROBLEM ############################################################################ ############################################################################ DISCRETE CASE: Sample two discrete measures for the discrete case --------------------------------------------- Define 2 discrete measures a and b, the points where are defined the source and the target measures and finally the cost matrix c. .. code-block:: default n_source = 7 n_target = 4 reg = 1 numItermax = 1000 a = ot.utils.unif(n_source) b = ot.utils.unif(n_target) rng = np.random.RandomState(0) X_source = rng.randn(n_source, 2) Y_target = rng.randn(n_target, 2) M = ot.dist(X_source, Y_target) Call the "SAG" method to find the transportation matrix in the discrete case --------------------------------------------- Define the method "SAG", call ot.solve_semi_dual_entropic and plot the results. .. code-block:: default method = "SAG" sag_pi = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method, numItermax) print(sag_pi) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [[2.55553509e-02 9.96395660e-02 1.76579142e-02 4.31178196e-06] [1.21640234e-01 1.25357448e-02 1.30225078e-03 7.37891338e-03] [3.56123975e-03 7.61451746e-02 6.31505947e-02 1.33831456e-07] [2.61515202e-02 3.34246014e-02 8.28734709e-02 4.07550428e-04] [9.85500870e-03 7.52288517e-04 1.08262628e-02 1.21423583e-01] [2.16904253e-02 9.03825797e-04 1.87178503e-03 1.18391107e-01] [4.15462212e-02 2.65987989e-02 7.23177216e-02 2.39440107e-03]] SEMICONTINOUS CASE: Sample one general measure a, one discrete measures b for the semicontinous case --------------------------------------------- Define one general measure a, one discrete measures b, the points where are defined the source and the target measures and finally the cost matrix c. .. code-block:: default n_source = 7 n_target = 4 reg = 1 numItermax = 1000 log = True a = ot.utils.unif(n_source) b = ot.utils.unif(n_target) rng = np.random.RandomState(0) X_source = rng.randn(n_source, 2) Y_target = rng.randn(n_target, 2) M = ot.dist(X_source, Y_target) Call the "ASGD" method to find the transportation matrix in the semicontinous case --------------------------------------------- Define the method "ASGD", call ot.solve_semi_dual_entropic and plot the results. .. code-block:: default method = "ASGD" asgd_pi, log_asgd = ot.stochastic.solve_semi_dual_entropic(a, b, M, reg, method, numItermax, log=log) print(log_asgd['alpha'], log_asgd['beta']) print(asgd_pi) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [3.89943264 7.64823414 3.9284189 2.67501041 1.42825446 3.26039819 2.79237712] [-2.50786905 -2.42684838 -0.93647774 5.87119517] [[2.50229922e-02 1.00367920e-01 1.74615056e-02 4.72486104e-06] [1.20583329e-01 1.27839737e-02 1.30373565e-03 8.18610462e-03] [3.49243139e-03 7.68200813e-02 6.25444833e-02 1.46879008e-07] [2.58205995e-02 3.39501207e-02 8.26360982e-02 4.50324517e-04] [8.94164918e-03 7.02183713e-04 9.92028326e-03 1.23293027e-01] [1.97360234e-02 8.46022708e-04 1.72001583e-03 1.20555081e-01] [4.10386980e-02 2.70289873e-02 7.21425804e-02 2.64687723e-03]] Compare the results with the Sinkhorn algorithm --------------------------------------------- Call the Sinkhorn algorithm from POT .. code-block:: default sinkhorn_pi = ot.sinkhorn(a, b, M, reg) print(sinkhorn_pi) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [[2.55553508e-02 9.96395661e-02 1.76579142e-02 4.31178193e-06] [1.21640234e-01 1.25357448e-02 1.30225079e-03 7.37891333e-03] [3.56123974e-03 7.61451746e-02 6.31505947e-02 1.33831455e-07] [2.61515201e-02 3.34246014e-02 8.28734709e-02 4.07550425e-04] [9.85500876e-03 7.52288523e-04 1.08262629e-02 1.21423583e-01] [2.16904255e-02 9.03825804e-04 1.87178504e-03 1.18391107e-01] [4.15462212e-02 2.65987989e-02 7.23177217e-02 2.39440105e-03]] PLOT TRANSPORTATION MATRIX ############################################################################# Plot SAG results ---------------- .. code-block:: default pl.figure(4, figsize=(5, 5)) ot.plot.plot1D_mat(a, b, sag_pi, 'semi-dual : OT matrix SAG') pl.show() .. image:: /auto_examples/images/sphx_glr_plot_stochastic_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/rflamary/PYTHON/POT/examples/plot_stochastic.py:119: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure. pl.show() Plot ASGD results ----------------- .. code-block:: default pl.figure(4, figsize=(5, 5)) ot.plot.plot1D_mat(a, b, asgd_pi, 'semi-dual : OT matrix ASGD') pl.show() .. image:: /auto_examples/images/sphx_glr_plot_stochastic_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/rflamary/PYTHON/POT/examples/plot_stochastic.py:128: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure. pl.show() Plot Sinkhorn results --------------------- .. code-block:: default pl.figure(4, figsize=(5, 5)) ot.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn') pl.show() .. image:: /auto_examples/images/sphx_glr_plot_stochastic_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/rflamary/PYTHON/POT/examples/plot_stochastic.py:137: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure. pl.show() COMPUTE TRANSPORTATION MATRIX FOR DUAL PROBLEM ############################################################################ ############################################################################ SEMICONTINOUS CASE: Sample one general measure a, one discrete measures b for the semicontinous case --------------------------------------------- Define one general measure a, one discrete measures b, the points where are defined the source and the target measures and finally the cost matrix c. .. code-block:: default n_source = 7 n_target = 4 reg = 1 numItermax = 100000 lr = 0.1 batch_size = 3 log = True a = ot.utils.unif(n_source) b = ot.utils.unif(n_target) rng = np.random.RandomState(0) X_source = rng.randn(n_source, 2) Y_target = rng.randn(n_target, 2) M = ot.dist(X_source, Y_target) Call the "SGD" dual method to find the transportation matrix in the semicontinous case --------------------------------------------- Call ot.solve_dual_entropic and plot the results. .. code-block:: default sgd_dual_pi, log_sgd = ot.stochastic.solve_dual_entropic(a, b, M, reg, batch_size, numItermax, lr, log=log) print(log_sgd['alpha'], log_sgd['beta']) print(sgd_dual_pi) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [0.91421006 2.78075506 1.06828701 0.01979397 0.60914807 1.81887037 0.1152939 ] [0.33964624 0.47604281 1.57223631 4.93843308] [[2.18038772e-02 9.24355133e-02 1.08426805e-02 9.39355366e-08] [1.59966167e-02 1.79248770e-03 1.23251128e-04 2.47779034e-05] [3.44864558e-03 8.01760930e-02 4.40119061e-02 3.30922887e-09] [3.12954103e-02 4.34915712e-02 7.13747533e-02 1.24533534e-05] [6.79742497e-02 5.64192090e-03 5.37416946e-02 2.13851205e-02] [8.05141568e-02 3.64790957e-03 5.00040902e-03 1.12213345e-02] [4.86643900e-02 3.38763749e-02 6.09634969e-02 7.16139950e-05]] Compare the results with the Sinkhorn algorithm --------------------------------------------- Call the Sinkhorn algorithm from POT .. code-block:: default sinkhorn_pi = ot.sinkhorn(a, b, M, reg) print(sinkhorn_pi) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [[2.55553508e-02 9.96395661e-02 1.76579142e-02 4.31178193e-06] [1.21640234e-01 1.25357448e-02 1.30225079e-03 7.37891333e-03] [3.56123974e-03 7.61451746e-02 6.31505947e-02 1.33831455e-07] [2.61515201e-02 3.34246014e-02 8.28734709e-02 4.07550425e-04] [9.85500876e-03 7.52288523e-04 1.08262629e-02 1.21423583e-01] [2.16904255e-02 9.03825804e-04 1.87178504e-03 1.18391107e-01] [4.15462212e-02 2.65987989e-02 7.23177217e-02 2.39440105e-03]] Plot SGD results ----------------- .. code-block:: default pl.figure(4, figsize=(5, 5)) ot.plot.plot1D_mat(a, b, sgd_dual_pi, 'dual : OT matrix SGD') pl.show() .. image:: /auto_examples/images/sphx_glr_plot_stochastic_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/rflamary/PYTHON/POT/examples/plot_stochastic.py:199: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure. pl.show() Plot Sinkhorn results --------------------- .. code-block:: default pl.figure(4, figsize=(5, 5)) ot.plot.plot1D_mat(a, b, sinkhorn_pi, 'OT matrix Sinkhorn') pl.show() .. image:: /auto_examples/images/sphx_glr_plot_stochastic_005.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/rflamary/PYTHON/POT/examples/plot_stochastic.py:208: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure. pl.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 8.885 seconds) .. _sphx_glr_download_auto_examples_plot_stochastic.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_stochastic.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_stochastic.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_