# -*- coding: utf-8 -*- r""" ================================================ Spherical Sliced-Wasserstein Embedding on Sphere ================================================ Here, we aim at transforming samples into a uniform distribution on the sphere by minimizing SSW: .. math:: \min_{x} SSW_2(\nu, \frac{1}{n}\sum_{i=1}^n \delta_{x_i}) where :math:`\nu=\mathrm{Unif}(S^1)`. """ # Author: Clément Bonet # # License: MIT License # sphinx_gallery_thumbnail_number = 3 import numpy as np import matplotlib.pyplot as pl import matplotlib.animation as animation import torch import torch.nn.functional as F import ot # %% # Data generation # --------------- torch.manual_seed(1) N = 1000 x0 = torch.rand(N, 3) x0 = F.normalize(x0, dim=-1) # %% # Plot data # --------- def plot_sphere(ax): xlist = np.linspace(-1.0, 1.0, 50) ylist = np.linspace(-1.0, 1.0, 50) r = np.linspace(1.0, 1.0, 50) X, Y = np.meshgrid(xlist, ylist) Z = np.sqrt(np.maximum(r**2 - X**2 - Y**2, 0)) ax.plot_wireframe(X, Y, Z, color="gray", alpha=.3) ax.plot_wireframe(X, Y, -Z, color="gray", alpha=.3) # Now plot the bottom half # plot the distributions pl.figure(1) ax = pl.axes(projection='3d') plot_sphere(ax) ax.scatter(x0[:, 0], x0[:, 1], x0[:, 2], label='Data samples', alpha=0.5) ax.set_title('Data distribution') ax.legend() # %% # Gradient descent # ---------------- x = x0.clone() x.requires_grad_(True) n_iter = 500 lr = 100 losses = [] xvisu = torch.zeros(n_iter, N, 3) for i in range(n_iter): sw = ot.sliced_wasserstein_sphere_unif(x, n_projections=500) grad_x = torch.autograd.grad(sw, x)[0] x = x - lr * grad_x x = F.normalize(x, p=2, dim=1) losses.append(sw.item()) xvisu[i, :, :] = x.detach().clone() if i % 100 == 0: print("Iter: {:3d}, loss={}".format(i, losses[-1])) pl.figure(1) pl.semilogy(losses) pl.grid() pl.title('SSW') pl.xlabel("Iterations") # %% # Plot trajectories of generated samples along iterations # ------------------------------------------------------- ivisu = [0, 25, 50, 75, 100, 150, 200, 350, 499] fig = pl.figure(3, (10, 10)) for i in range(9): # pl.subplot(3, 3, i + 1) # ax = pl.axes(projection='3d') ax = fig.add_subplot(3, 3, i + 1, projection='3d') plot_sphere(ax) ax.scatter(xvisu[ivisu[i], :, 0], xvisu[ivisu[i], :, 1], xvisu[ivisu[i], :, 2], label='Data samples', alpha=0.5) ax.set_title('Iter. {}'.format(ivisu[i])) #ax.axis("off") if i == 0: ax.legend() # %% # Animate trajectories of generated samples along iteration # ------------------------------------------------------- pl.figure(4, (8, 8)) def _update_plot(i): i = 3 * i pl.clf() ax = pl.axes(projection='3d') plot_sphere(ax) ax.scatter(xvisu[i, :, 0], xvisu[i, :, 1], xvisu[i, :, 2], label='Data samples$', alpha=0.5) ax.axis("off") ax.set_xlim((-1.5, 1.5)) ax.set_ylim((-1.5, 1.5)) ax.set_title('Iter. {}'.format(i)) return 1 print(xvisu.shape) i = 0 ax = pl.axes(projection='3d') plot_sphere(ax) ax.scatter(xvisu[i, :, 0], xvisu[i, :, 1], xvisu[i, :, 2], label='Data samples from $G\#\mu_n$', alpha=0.5) ax.axis("off") ax.set_xlim((-1.5, 1.5)) ax.set_ylim((-1.5, 1.5)) ax.set_title('Iter. {}'.format(ivisu[i])) ani = animation.FuncAnimation(pl.gcf(), _update_plot, n_iter // 5, interval=100, repeat_delay=2000) # %%