# -*- coding: utf-8 -*- """ ====================================================== OT with Laplacian regularization for domain adaptation ====================================================== This example introduces a domain adaptation in a 2D setting and OTDA approach with Laplacian regularization. """ # Authors: Ievgen Redko # License: MIT License import matplotlib.pylab as pl import ot ############################################################################## # Generate data # ------------- n_source_samples = 150 n_target_samples = 150 Xs, ys = ot.datasets.make_data_classif('3gauss', n_source_samples) Xt, yt = ot.datasets.make_data_classif('3gauss2', n_target_samples) ############################################################################## # Instantiate the different transport algorithms and fit them # ----------------------------------------------------------- # EMD Transport ot_emd = ot.da.EMDTransport() ot_emd.fit(Xs=Xs, Xt=Xt) # Sinkhorn Transport ot_sinkhorn = ot.da.SinkhornTransport(reg_e=.01) ot_sinkhorn.fit(Xs=Xs, Xt=Xt) # EMD Transport with Laplacian regularization ot_emd_laplace = ot.da.EMDLaplaceTransport(reg_lap=100, reg_src=1) ot_emd_laplace.fit(Xs=Xs, Xt=Xt) # transport source samples onto target samples transp_Xs_emd = ot_emd.transform(Xs=Xs) transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=Xs) transp_Xs_emd_laplace = ot_emd_laplace.transform(Xs=Xs) ############################################################################## # Fig 1 : plots source and target samples # --------------------------------------- pl.figure(1, figsize=(10, 5)) pl.subplot(1, 2, 1) pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker='+', label='Source samples') pl.xticks([]) pl.yticks([]) pl.legend(loc=0) pl.title('Source samples') pl.subplot(1, 2, 2) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples') pl.xticks([]) pl.yticks([]) pl.legend(loc=0) pl.title('Target samples') pl.tight_layout() ############################################################################## # Fig 2 : plot optimal couplings and transported samples # ------------------------------------------------------ param_img = {'interpolation': 'nearest'} pl.figure(2, figsize=(15, 8)) pl.subplot(2, 3, 1) pl.imshow(ot_emd.coupling_, **param_img) pl.xticks([]) pl.yticks([]) pl.title('Optimal coupling\nEMDTransport') pl.figure(2, figsize=(15, 8)) pl.subplot(2, 3, 2) pl.imshow(ot_sinkhorn.coupling_, **param_img) pl.xticks([]) pl.yticks([]) pl.title('Optimal coupling\nSinkhornTransport') pl.subplot(2, 3, 3) pl.imshow(ot_emd_laplace.coupling_, **param_img) pl.xticks([]) pl.yticks([]) pl.title('Optimal coupling\nEMDLaplaceTransport') pl.subplot(2, 3, 4) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples', alpha=0.3) pl.scatter(transp_Xs_emd[:, 0], transp_Xs_emd[:, 1], c=ys, marker='+', label='Transp samples', s=30) pl.xticks([]) pl.yticks([]) pl.title('Transported samples\nEmdTransport') pl.legend(loc="lower left") pl.subplot(2, 3, 5) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples', alpha=0.3) pl.scatter(transp_Xs_sinkhorn[:, 0], transp_Xs_sinkhorn[:, 1], c=ys, marker='+', label='Transp samples', s=30) pl.xticks([]) pl.yticks([]) pl.title('Transported samples\nSinkhornTransport') pl.subplot(2, 3, 6) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker='o', label='Target samples', alpha=0.3) pl.scatter(transp_Xs_emd_laplace[:, 0], transp_Xs_emd_laplace[:, 1], c=ys, marker='+', label='Transp samples', s=30) pl.xticks([]) pl.yticks([]) pl.title('Transported samples\nEMDLaplaceTransport') pl.tight_layout() pl.show()