#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ ============================ Linear OT mapping estimation ============================ """ # Author: Remi Flamary # # License: MIT License # sphinx_gallery_thumbnail_number = 2 import os from pathlib import Path import numpy as np from matplotlib import pyplot as plt import ot ############################################################################## # Generate data # ------------- n = 1000 d = 2 sigma = .1 rng = np.random.RandomState(42) # source samples angles = rng.rand(n, 1) * 2 * np.pi xs = np.concatenate((np.sin(angles), np.cos(angles)), axis=1) + sigma * rng.randn(n, 2) xs[:n // 2, 1] += 2 # target samples anglet = rng.rand(n, 1) * 2 * np.pi xt = np.concatenate((np.sin(anglet), np.cos(anglet)), axis=1) + sigma * rng.randn(n, 2) xt[:n // 2, 1] += 2 A = np.array([[1.5, .7], [.7, 1.5]]) b = np.array([[4, 2]]) xt = xt.dot(A) + b ############################################################################## # Plot data # --------- plt.figure(1, (5, 5)) plt.plot(xs[:, 0], xs[:, 1], '+') plt.plot(xt[:, 0], xt[:, 1], 'o') ############################################################################## # Estimate linear mapping and transport # ------------------------------------- Ae, be = ot.gaussian.empirical_bures_wasserstein_mapping(xs, xt) xst = xs.dot(Ae) + be ############################################################################## # Plot transported samples # ------------------------ plt.figure(1, (5, 5)) plt.clf() plt.plot(xs[:, 0], xs[:, 1], '+') plt.plot(xt[:, 0], xt[:, 1], 'o') plt.plot(xst[:, 0], xst[:, 1], '+') plt.show() ############################################################################## # Load image data # --------------- def im2mat(img): """Converts and image to matrix (one pixel per line)""" return img.reshape((img.shape[0] * img.shape[1], img.shape[2])) def mat2im(X, shape): """Converts back a matrix to an image""" return X.reshape(shape) def minmax(img): return np.clip(img, 0, 1) # Loading images this_file = os.path.realpath('__file__') data_path = os.path.join(Path(this_file).parent.parent.parent, 'data') I1 = plt.imread(os.path.join(data_path, 'ocean_day.jpg')).astype(np.float64) / 256 I2 = plt.imread(os.path.join(data_path, 'ocean_sunset.jpg')).astype(np.float64) / 256 X1 = im2mat(I1) X2 = im2mat(I2) ############################################################################## # Estimate mapping and adapt # ---------------------------- mapping = ot.da.LinearTransport() mapping.fit(Xs=X1, Xt=X2) xst = mapping.transform(Xs=X1) xts = mapping.inverse_transform(Xt=X2) I1t = minmax(mat2im(xst, I1.shape)) I2t = minmax(mat2im(xts, I2.shape)) # %% ############################################################################## # Plot transformed images # ----------------------- plt.figure(2, figsize=(10, 7)) plt.subplot(2, 2, 1) plt.imshow(I1) plt.axis('off') plt.title('Im. 1') plt.subplot(2, 2, 2) plt.imshow(I2) plt.axis('off') plt.title('Im. 2') plt.subplot(2, 2, 3) plt.imshow(I1t) plt.axis('off') plt.title('Mapping Im. 1') plt.subplot(2, 2, 4) plt.imshow(I2t) plt.axis('off') plt.title('Inverse mapping Im. 2')