# -*- coding: utf-8 -*- """ ===================================================== OT for image color adaptation with mapping estimation ===================================================== OT for domain adaptation with image color adaptation [6] with mapping estimation [8]. [6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882. [8] M. Perrot, N. Courty, R. Flamary, A. Habrard, "Mapping estimation for discrete optimal transport", Neural Information Processing Systems (NIPS), 2016. """ # Authors: Remi Flamary # Stanislas Chambon # # License: MIT License # sphinx_gallery_thumbnail_number = 3 import numpy as np import matplotlib.pylab as pl import ot r = np.random.RandomState(42) def im2mat(I): """Converts and image to matrix (one pixel per line)""" return I.reshape((I.shape[0] * I.shape[1], I.shape[2])) def mat2im(X, shape): """Converts back a matrix to an image""" return X.reshape(shape) def minmax(I): return np.clip(I, 0, 1) ############################################################################## # Generate data # ------------- # Loading images I1 = pl.imread('../../data/ocean_day.jpg').astype(np.float64) / 256 I2 = pl.imread('../../data/ocean_sunset.jpg').astype(np.float64) / 256 X1 = im2mat(I1) X2 = im2mat(I2) # training samples nb = 1000 idx1 = r.randint(X1.shape[0], size=(nb,)) idx2 = r.randint(X2.shape[0], size=(nb,)) Xs = X1[idx1, :] Xt = X2[idx2, :] ############################################################################## # Domain adaptation for pixel distribution transfer # ------------------------------------------------- # EMDTransport ot_emd = ot.da.EMDTransport() ot_emd.fit(Xs=Xs, Xt=Xt) transp_Xs_emd = ot_emd.transform(Xs=X1) Image_emd = minmax(mat2im(transp_Xs_emd, I1.shape)) # SinkhornTransport ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1) ot_sinkhorn.fit(Xs=Xs, Xt=Xt) transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=X1) Image_sinkhorn = minmax(mat2im(transp_Xs_sinkhorn, I1.shape)) ot_mapping_linear = ot.da.MappingTransport( mu=1e0, eta=1e-8, bias=True, max_iter=20, verbose=True) ot_mapping_linear.fit(Xs=Xs, Xt=Xt) X1tl = ot_mapping_linear.transform(Xs=X1) Image_mapping_linear = minmax(mat2im(X1tl, I1.shape)) ot_mapping_gaussian = ot.da.MappingTransport( mu=1e0, eta=1e-2, sigma=1, bias=False, max_iter=10, verbose=True) ot_mapping_gaussian.fit(Xs=Xs, Xt=Xt) X1tn = ot_mapping_gaussian.transform(Xs=X1) # use the estimated mapping Image_mapping_gaussian = minmax(mat2im(X1tn, I1.shape)) ############################################################################## # Plot original images # -------------------- pl.figure(1, figsize=(6.4, 3)) pl.subplot(1, 2, 1) pl.imshow(I1) pl.axis('off') pl.title('Image 1') pl.subplot(1, 2, 2) pl.imshow(I2) pl.axis('off') pl.title('Image 2') pl.tight_layout() ############################################################################## # Plot pixel values distribution # ------------------------------ pl.figure(2, figsize=(6.4, 5)) pl.subplot(1, 2, 1) pl.scatter(Xs[:, 0], Xs[:, 2], c=Xs) pl.axis([0, 1, 0, 1]) pl.xlabel('Red') pl.ylabel('Blue') pl.title('Image 1') pl.subplot(1, 2, 2) pl.scatter(Xt[:, 0], Xt[:, 2], c=Xt) pl.axis([0, 1, 0, 1]) pl.xlabel('Red') pl.ylabel('Blue') pl.title('Image 2') pl.tight_layout() ############################################################################## # Plot transformed images # ----------------------- pl.figure(2, figsize=(10, 5)) pl.subplot(2, 3, 1) pl.imshow(I1) pl.axis('off') pl.title('Im. 1') pl.subplot(2, 3, 4) pl.imshow(I2) pl.axis('off') pl.title('Im. 2') pl.subplot(2, 3, 2) pl.imshow(Image_emd) pl.axis('off') pl.title('EmdTransport') pl.subplot(2, 3, 5) pl.imshow(Image_sinkhorn) pl.axis('off') pl.title('SinkhornTransport') pl.subplot(2, 3, 3) pl.imshow(Image_mapping_linear) pl.axis('off') pl.title('MappingTransport (linear)') pl.subplot(2, 3, 6) pl.imshow(Image_mapping_gaussian) pl.axis('off') pl.title('MappingTransport (gaussian)') pl.tight_layout() pl.show()