# -*- coding: utf-8 -*- """ ==================================================================================== OT for domain adaptation with image color adaptation [6] with mapping estimation [8] ==================================================================================== [6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882. [8] M. Perrot, N. Courty, R. Flamary, A. Habrard, "Mapping estimation for discrete optimal transport", Neural Information Processing Systems (NIPS), 2016. """ import numpy as np from scipy import ndimage import matplotlib.pylab as pl import ot #%% Loading images I1 = ndimage.imread('../data/ocean_day.jpg').astype(np.float64) / 256 I2 = ndimage.imread('../data/ocean_sunset.jpg').astype(np.float64) / 256 #%% Plot images pl.figure(1, figsize=(6.4, 3)) pl.subplot(1, 2, 1) pl.imshow(I1) pl.axis('off') pl.title('Image 1') pl.subplot(1, 2, 2) pl.imshow(I2) pl.axis('off') pl.title('Image 2') pl.tight_layout() #%% Image conversion and dataset generation def im2mat(I): """Converts and image to matrix (one pixel per line)""" return I.reshape((I.shape[0] * I.shape[1], I.shape[2])) def mat2im(X, shape): """Converts back a matrix to an image""" return X.reshape(shape) X1 = im2mat(I1) X2 = im2mat(I2) # training samples nb = 1000 idx1 = np.random.randint(X1.shape[0], size=(nb,)) idx2 = np.random.randint(X2.shape[0], size=(nb,)) xs = X1[idx1, :] xt = X2[idx2, :] #%% Plot image distributions pl.figure(2, figsize=(6.4, 5)) pl.subplot(1, 2, 1) pl.scatter(xs[:, 0], xs[:, 2], c=xs) pl.axis([0, 1, 0, 1]) pl.xlabel('Red') pl.ylabel('Blue') pl.title('Image 1') pl.subplot(1, 2, 2) pl.scatter(xt[:, 0], xt[:, 2], c=xt) pl.axis([0, 1, 0, 1]) pl.xlabel('Red') pl.ylabel('Blue') pl.title('Image 2') pl.tight_layout() #%% domain adaptation between images def minmax(I): return np.clip(I, 0, 1) # LP problem da_emd = ot.da.OTDA() # init class da_emd.fit(xs, xt) # fit distributions X1t = da_emd.predict(X1) # out of sample I1t = minmax(mat2im(X1t, I1.shape)) # sinkhorn regularization lambd = 1e-1 da_entrop = ot.da.OTDA_sinkhorn() da_entrop.fit(xs, xt, reg=lambd) X1te = da_entrop.predict(X1) I1te = minmax(mat2im(X1te, I1.shape)) # linear mapping estimation eta = 1e-8 # quadratic regularization for regression mu = 1e0 # weight of the OT linear term bias = True # estimate a bias ot_mapping = ot.da.OTDA_mapping_linear() ot_mapping.fit(xs, xt, mu=mu, eta=eta, bias=bias, numItermax=20, verbose=True) X1tl = ot_mapping.predict(X1) # use the estimated mapping I1tl = minmax(mat2im(X1tl, I1.shape)) # nonlinear mapping estimation eta = 1e-2 # quadratic regularization for regression mu = 1e0 # weight of the OT linear term bias = False # estimate a bias sigma = 1 # sigma bandwidth fot gaussian kernel ot_mapping_kernel = ot.da.OTDA_mapping_kernel() ot_mapping_kernel.fit( xs, xt, mu=mu, eta=eta, sigma=sigma, bias=bias, numItermax=10, verbose=True) X1tn = ot_mapping_kernel.predict(X1) # use the estimated mapping I1tn = minmax(mat2im(X1tn, I1.shape)) #%% plot images pl.figure(2, figsize=(8, 4)) pl.subplot(2, 3, 1) pl.imshow(I1) pl.axis('off') pl.title('Im. 1') pl.subplot(2, 3, 2) pl.imshow(I2) pl.axis('off') pl.title('Im. 2') pl.subplot(2, 3, 3) pl.imshow(I1t) pl.axis('off') pl.title('Im. 1 Interp LP') pl.subplot(2, 3, 4) pl.imshow(I1te) pl.axis('off') pl.title('Im. 1 Interp Entrop') pl.subplot(2, 3, 5) pl.imshow(I1tl) pl.axis('off') pl.title('Im. 1 Linear mapping') pl.subplot(2, 3, 6) pl.imshow(I1tn) pl.axis('off') pl.title('Im. 1 nonlinear mapping') pl.tight_layout() pl.show()