# -*- coding: utf-8 -*- """ ==================================================== 2D Optimal transport between empirical distributions ==================================================== Illustration of 2D optimal transport between discributions that are weighted sum of diracs. The OT matrix is plotted with the samples. """ # Author: Remi Flamary # Kilian Fatras # # License: MIT License # sphinx_gallery_thumbnail_number = 4 import numpy as np import matplotlib.pylab as pl import ot import ot.plot ############################################################################## # Generate data # ------------- #%% parameters and data generation n = 50 # nb samples mu_s = np.array([0, 0]) cov_s = np.array([[1, 0], [0, 1]]) mu_t = np.array([4, 4]) cov_t = np.array([[1, -.8], [-.8, 1]]) xs = ot.datasets.make_2D_samples_gauss(n, mu_s, cov_s) xt = ot.datasets.make_2D_samples_gauss(n, mu_t, cov_t) a, b = np.ones((n,)) / n, np.ones((n,)) / n # uniform distribution on samples # loss matrix M = ot.dist(xs, xt) M /= M.max() ############################################################################## # Plot data # --------- #%% plot samples pl.figure(1) pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples') pl.legend(loc=0) pl.title('Source and target distributions') pl.figure(2) pl.imshow(M, interpolation='nearest') pl.title('Cost matrix M') ############################################################################## # Compute EMD # ----------- #%% EMD G0 = ot.emd(a, b, M) pl.figure(3) pl.imshow(G0, interpolation='nearest') pl.title('OT matrix G0') pl.figure(4) ot.plot.plot2D_samples_mat(xs, xt, G0, c=[.5, .5, 1]) pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples') pl.legend(loc=0) pl.title('OT matrix with samples') ############################################################################## # Compute Sinkhorn # ---------------- #%% sinkhorn # reg term lambd = 1e-3 Gs = ot.sinkhorn(a, b, M, lambd) pl.figure(5) pl.imshow(Gs, interpolation='nearest') pl.title('OT matrix sinkhorn') pl.figure(6) ot.plot.plot2D_samples_mat(xs, xt, Gs, color=[.5, .5, 1]) pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples') pl.legend(loc=0) pl.title('OT matrix Sinkhorn with samples') pl.show() ############################################################################## # Emprirical Sinkhorn # ---------------- #%% sinkhorn # reg term lambd = 1e-3 Ges = ot.bregman.empirical_sinkhorn(xs, xt, lambd) pl.figure(7) pl.imshow(Ges, interpolation='nearest') pl.title('OT matrix empirical sinkhorn') pl.figure(8) ot.plot.plot2D_samples_mat(xs, xt, Ges, color=[.5, .5, 1]) pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples') pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples') pl.legend(loc=0) pl.title('OT matrix Sinkhorn from samples') pl.show()