# -*- coding: utf-8 -*- """ ==================================================== Spherical Sliced Wasserstein on distributions in S^2 ==================================================== This example illustrates the computation of the spherical sliced Wasserstein discrepancy as proposed in [46]. [46] Bonet, C., Berg, P., Courty, N., Septier, F., Drumetz, L., & Pham, M. T. (2023). 'Spherical Sliced-Wasserstein". International Conference on Learning Representations. """ # Author: Clément Bonet # # License: MIT License # sphinx_gallery_thumbnail_number = 2 import matplotlib.pylab as pl import numpy as np import ot ############################################################################## # Generate data # ------------- # %% parameters and data generation n = 500 # nb samples xs = np.random.randn(n, 3) xt = np.random.randn(n, 3) xs = xs / np.sqrt(np.sum(xs**2, -1, keepdims=True)) xt = xt / np.sqrt(np.sum(xt**2, -1, keepdims=True)) a, b = np.ones((n,)) / n, np.ones((n,)) / n # uniform distribution on samples ############################################################################## # Plot data # --------- # %% plot samples fig = pl.figure(figsize=(10, 10)) ax = pl.axes(projection='3d') ax.grid(False) u, v = np.mgrid[0:2 * np.pi:30j, 0:np.pi:30j] x = np.cos(u) * np.sin(v) y = np.sin(u) * np.sin(v) z = np.cos(v) ax.plot_surface(x, y, z, color="gray", alpha=0.03) ax.plot_wireframe(x, y, z, linewidth=1, alpha=0.25, color="gray") ax.scatter(xs[:, 0], xs[:, 1], xs[:, 2], label="Source") ax.scatter(xt[:, 0], xt[:, 1], xt[:, 2], label="Target") fs = 10 # Labels ax.set_xlabel('x', fontsize=fs) ax.set_ylabel('y', fontsize=fs) ax.set_zlabel('z', fontsize=fs) ax.view_init(20, 120) ax.set_xlim(-1.5, 1.5) ax.set_ylim(-1.5, 1.5) ax.set_zlim(-1.5, 1.5) # Ticks ax.set_xticks([-1, 0, 1]) ax.set_yticks([-1, 0, 1]) ax.set_zticks([-1, 0, 1]) pl.legend(loc=0) pl.title("Source and Target distribution") ############################################################################### # Spherical Sliced Wasserstein for different seeds and number of projections # -------------------------------------------------------------------------- n_seed = 50 n_projections_arr = np.logspace(0, 3, 25, dtype=int) res = np.empty((n_seed, 25)) # %% Compute statistics for seed in range(n_seed): for i, n_projections in enumerate(n_projections_arr): res[seed, i] = ot.sliced_wasserstein_sphere(xs, xt, a, b, n_projections, seed=seed, p=1) res_mean = np.mean(res, axis=0) res_std = np.std(res, axis=0) ############################################################################### # Plot Spherical Sliced Wasserstein # --------------------------------- pl.figure(2) pl.plot(n_projections_arr, res_mean, label=r"$SSW_1$") pl.fill_between(n_projections_arr, res_mean - 2 * res_std, res_mean + 2 * res_std, alpha=0.5) pl.legend() pl.xscale('log') pl.xlabel("Number of projections") pl.ylabel("Distance") pl.title('Spherical Sliced Wasserstein Distance with 95% confidence inverval') pl.show()