# -*- coding: utf-8 -*- """ Bregman projections for regularized OT """ import numpy as np def sinkhorn(a,b, M, reg, numItermax = 1000, stopThr=1e-9, verbose=False, log=False): """ Solve the entropic regularization optimal transport problem The function solves the following optimization problem: .. math:: \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) s.t. \gamma 1 = a \gamma^T 1= b \gamma\geq 0 where : - M is the (ns,nt) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are source and target weights (sum to 1) The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [2]_ Parameters ---------- a : np.ndarray (ns,) samples weights in the source domain b : np.ndarray (nt,) samples in the target domain M : np.ndarray (ns,nt) loss matrix reg : float Regularization term >0 numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshol on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (ns x nt) ndarray Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters Examples -------- >>> import ot >>> a=[.5,.5] >>> b=[.5,.5] >>> M=[[0.,1.],[1.,0.]] >>> ot.sinkhorn(a,b,M,1) array([[ 0.36552929, 0.13447071], [ 0.13447071, 0.36552929]]) References ---------- .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013 See Also -------- ot.lp.emd : Unregularized OT ot.optim.cg : General regularized OT """ a=np.asarray(a,dtype=np.float64) b=np.asarray(b,dtype=np.float64) M=np.asarray(M,dtype=np.float64) if len(a)==0: a=np.ones((M.shape[0],),dtype=np.float64)/M.shape[0] if len(b)==0: b=np.ones((M.shape[1],),dtype=np.float64)/M.shape[1] # init data Nini = len(a) Nfin = len(b) cpt = 0 if log: log={'err':[]} # we assume that no distances are null except those of the diagonal of distances u = np.ones(Nini)/Nini v = np.ones(Nfin)/Nfin uprev=np.zeros(Nini) vprev=np.zeros(Nini) #print reg K = np.exp(-M/reg) #print np.min(K) Kp = np.dot(np.diag(1/a),K) transp = K cpt = 0 err=1 while (err>stopThr and cpttau or np.abs(v).max()>tau: alpha,beta=alpha+reg*np.log(u),beta+reg*np.log(v) u,v = np.ones(na)/na,np.ones(nb)/nb K=get_K(alpha,beta) uprev = u vprev = v v = b/np.dot(K.T,u) u = a/np.dot(K,v) if cpt%print_period==0: # we can speed up the process by checking for the error only all the 10th iterations transp = get_Gamma(alpha,beta,u,v) err = np.linalg.norm((np.sum(transp,axis=0)-b))**2 if log: log['err'].append(err) if verbose: if cpt%(print_period*20) ==0: print('{:5s}|{:12s}'.format('It.','Err')+'\n'+'-'*19) print('{:5d}|{:8e}|'.format(cpt,err)) if err<=stopThr: loop=False if cpt>=numItermax: loop=False if np.any(np.dot(K.T,u)==0) or np.any(np.isnan(u)) or np.any(np.isnan(v)): # we have reached the machine precision # come back to previous solution and quit loop print('Warning: numerical errrors') if cpt!=0: u = uprev v = vprev break cpt = cpt +1 #print 'err=',err,' cpt=',cpt if log: log['logu']=alpha/reg+np.log(u) log['logv']=beta/reg+np.log(v) log['alpha']=alpha+reg*np.log(u) log['beta']=beta+reg*np.log(v) log['warmstart']=(log['alpha'],log['beta']) return get_Gamma(alpha,beta,u,v),log else: return get_Gamma(alpha,beta,u,v) def sinkhorn_epsilon_scaling(a,b, M, reg, numItermax = 100, epsilon0=1e4, numInnerItermax = 100,tau=1e3, stopThr=1e-9,warmstart=None, verbose=False,print_period=10, log=False): """ Solve the entropic regularization optimal transport problem with log stabilization and epsilon scaling. The function solves the following optimization problem: .. math:: \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) s.t. \gamma 1 = a \gamma^T 1= b \gamma\geq 0 where : - M is the (ns,nt) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are source and target weights (sum to 1) The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [2]_ but with the log stabilization proposed in [10]_ and the log scaling proposed in [9]_ algorithm 3.2 Parameters ---------- a : np.ndarray (ns,) samples weights in the source domain b : np.ndarray (nt,) samples in the target domain M : np.ndarray (ns,nt) loss matrix reg : float Regularization term >0 tau : float thershold for max value in u or v for log scaling tau : float thershold for max value in u or v for log scaling warmstart : tible of vectors if given then sarting values for alpha an beta log scalings numItermax : int, optional Max number of iterations numInnerItermax : int, optional Max number of iterationsin the inner slog stabilized sinkhorn epsilon0 : int, optional first epsilon regularization value (then exponential decrease to reg) stopThr : float, optional Stop threshol on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (ns x nt) ndarray Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters Examples -------- >>> import ot >>> a=[.5,.5] >>> b=[.5,.5] >>> M=[[0.,1.],[1.,0.]] >>> ot.bregman.sinkhorn_epsilon_scaling(a,b,M,1) array([[ 0.36552929, 0.13447071], [ 0.13447071, 0.36552929]]) References ---------- .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013 .. [9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519. See Also -------- ot.lp.emd : Unregularized OT ot.optim.cg : General regularized OT """ a=np.asarray(a,dtype=np.float64) b=np.asarray(b,dtype=np.float64) M=np.asarray(M,dtype=np.float64) if len(a)==0: a=np.ones((M.shape[0],),dtype=np.float64)/M.shape[0] if len(b)==0: b=np.ones((M.shape[1],),dtype=np.float64)/M.shape[1] # init data na = len(a) nb = len(b) # nrelative umerical precision with 64 bits numItermin = 35 numItermax=max(numItermin,numItermax) # ensure that last velue is exact cpt = 0 if log: log={'err':[]} # we assume that no distances are null except those of the diagonal of distances if warmstart is None: alpha,beta=np.zeros(na),np.zeros(nb) else: alpha,beta=warmstart def get_K(alpha,beta): """log space computation""" return np.exp(-(M-alpha.reshape((na,1))-beta.reshape((1,nb)))/reg) #print np.min(K) def get_reg(n): # exponential decreasing return (epsilon0-reg)*np.exp(-n)+reg loop=1 cpt = 0 err=1 while loop: regi=get_reg(cpt) G,logi=sinkhorn_stabilized(a,b, M, regi, numItermax = numInnerItermax, stopThr=1e-9,warmstart=(alpha,beta), verbose=False,print_period=20,tau=tau, log=True) alpha=logi['alpha'] beta=logi['beta'] if cpt>=numItermax: loop=False if cpt%(print_period)==0: # spsion nearly converged # we can speed up the process by checking for the error only all the 10th iterations transp = G err = np.linalg.norm((np.sum(transp,axis=0)-b))**2+np.linalg.norm((np.sum(transp,axis=1)-a))**2 if log: log['err'].append(err) if verbose: if cpt%(print_period*10) ==0: print('{:5s}|{:12s}'.format('It.','Err')+'\n'+'-'*19) print('{:5d}|{:8e}|'.format(cpt,err)) if err<=stopThr and cpt>numItermin: loop=False cpt = cpt +1 #print 'err=',err,' cpt=',cpt if log: log['alpha']=alpha log['beta']=beta log['warmstart']=(log['alpha'],log['beta']) return G,log else: return G def geometricBar(weights,alldistribT): """return the weighted geometric mean of distributions""" assert(len(weights)==alldistribT.shape[1]) return np.exp(np.dot(np.log(alldistribT),weights.T)) def geometricMean(alldistribT): """return the geometric mean of distributions""" return np.exp(np.mean(np.log(alldistribT),axis=1)) def projR(gamma,p): #return np.dot(np.diag(p/np.maximum(np.sum(gamma,axis=1),1e-10)),gamma) return np.multiply(gamma.T,p/np.maximum(np.sum(gamma,axis=1),1e-10)).T def projC(gamma,q): #return (np.dot(np.diag(q/np.maximum(np.sum(gamma,axis=0),1e-10)),gamma.T)).T return np.multiply(gamma,q/np.maximum(np.sum(gamma,axis=0),1e-10)) def barycenter(A,M,reg, weights=None, numItermax = 1000, stopThr=1e-4,verbose=False,log=False): """Compute the entropic regularized wasserstein barycenter of distributions A The function solves the following optimization problem: .. math:: \mathbf{a} = arg\min_\mathbf{a} \sum_i W_{reg}(\mathbf{a},\mathbf{a}_i) where : - :math:`W_{reg}(\cdot,\cdot)` is the entropic regularized Wasserstein distance (see ot.bregman.sinkhorn) - :math:`\mathbf{a}_i` are training distributions in the columns of matrix :math:`\mathbf{A}` - reg and :math:`\mathbf{M}` are respectively the regularization term and the cost matrix for OT The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [3]_ Parameters ---------- A : np.ndarray (d,n) n training distributions of size d M : np.ndarray (d,d) loss matrix for OT reg : float Regularization term >0 numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshol on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- a : (d,) ndarray Wasserstein barycenter log : dict log dictionary return only if log==True in parameters References ---------- .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138. """ if weights is None: weights=np.ones(A.shape[1])/A.shape[1] else: assert(len(weights)==A.shape[1]) if log: log={'err':[]} #M = M/np.median(M) # suggested by G. Peyre K = np.exp(-M/reg) cpt = 0 err=1 UKv=np.dot(K,np.divide(A.T,np.sum(K,axis=0)).T) u = (geometricMean(UKv)/UKv.T).T while (err>stopThr and cpt0 (Wasserstein data fitting) reg0 : float Regularization term >0 (Wasserstein reg with h0) alpha : float How much should we trust the prior ([0,1]) numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshol on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- a : (d,) ndarray Wasserstein barycenter log : dict log dictionary return only if log==True in parameters References ---------- .. [4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti, Supervised planetary unmixing with optimal transport, Whorkshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2016. """ #M = M/np.median(M) K = np.exp(-M/reg) #M0 = M0/np.median(M0) K0 = np.exp(-M0/reg0) old = h0 err=1 cpt=0 #log = {'niter':0, 'all_err':[]} if log: log={'err':[]} while (err>stopThr and cpt