# -*- coding: utf-8 -*- """ Gromov-Wasserstein transport method =================================== """ # Author: Erwan Vautier # Nicolas Courty # # License: MIT License import numpy as np from .bregman import sinkhorn from .utils import dist def square_loss(a, b): """ Returns the value of L(a,b)=(1/2)*|a-b|^2 """ return 0.5 * (a - b)**2 def kl_loss(a, b): """ Returns the value of L(a,b)=a*log(a/b)-a+b """ return a * np.log(a / b) - a + b def tensor_square_loss(C1, C2, T): """ Returns the value of \mathcal{L}(C1,C2) \otimes T with the square loss function as the loss function of Gromow-Wasserstein discrepancy. Where : C1 : Metric cost matrix in the source space C2 : Metric cost matrix in the target space T : A coupling between those two spaces The square-loss function L(a,b)=(1/2)*|a-b|^2 is read as : L(a,b) = f1(a)+f2(b)-h1(a)*h2(b) with : f1(a)=(a^2)/2 f2(b)=(b^2)/2 h1(a)=a h2(b)=b Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space T : np.ndarray(ns,nt) Coupling between source and target spaces Returns ------- tens : (ns*nt) ndarray \mathcal{L}(C1,C2) \otimes T tensor-matrix multiplication result """ C1 = np.asarray(C1, dtype=np.float64) C2 = np.asarray(C2, dtype=np.float64) T = np.asarray(T, dtype=np.float64) def f1(a): return (a**2) / 2 def f2(b): return (b**2) / 2 def h1(a): return a def h2(b): return b tens = -np.dot(h1(C1), T).dot(h2(C2).T) tens -= tens.min() return np.array(tens) def tensor_kl_loss(C1, C2, T): """ Returns the value of \mathcal{L}(C1,C2) \otimes T with the square loss function as the loss function of Gromow-Wasserstein discrepancy. Where : C1 : Metric cost matrix in the source space C2 : Metric cost matrix in the target space T : A coupling between those two spaces The square-loss function L(a,b)=(1/2)*|a-b|^2 is read as : L(a,b) = f1(a)+f2(b)-h1(a)*h2(b) with : f1(a)=a*log(a)-a f2(b)=b h1(a)=a h2(b)=log(b) Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space T : np.ndarray(ns,nt) Coupling between source and target spaces Returns ------- tens : (ns*nt) ndarray \mathcal{L}(C1,C2) \otimes T tensor-matrix multiplication result References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ C1 = np.asarray(C1, dtype=np.float64) C2 = np.asarray(C2, dtype=np.float64) T = np.asarray(T, dtype=np.float64) def f1(a): return a * np.log(a + 1e-15) - a def f2(b): return b def h1(a): return a def h2(b): return np.log(b + 1e-15) tens = -np.dot(h1(C1), T).dot(h2(C2).T) tens -= tens.min() return np.array(tens) def update_square_loss(p, lambdas, T, Cs): """ Updates C according to the L2 Loss kernel with the S Ts couplings calculated at each iteration Parameters ---------- p : np.ndarray(N,) weights in the targeted barycenter lambdas : list of the S spaces' weights T : list of S np.ndarray(ns,N) the S Ts couplings calculated at each iteration Cs : Cs : list of S np.ndarray(ns,ns) Metric cost matrices Returns ---------- C updated """ tmpsum = sum([lambdas[s] * np.dot(T[s].T, Cs[s]).dot(T[s]) for s in range(len(T))]) ppt = np.outer(p, p) return(np.divide(tmpsum, ppt)) def update_kl_loss(p, lambdas, T, Cs): """ Updates C according to the KL Loss kernel with the S Ts couplings calculated at each iteration Parameters ---------- p : np.ndarray(N,) weights in the targeted barycenter lambdas : list of the S spaces' weights T : list of S np.ndarray(ns,N) the S Ts couplings calculated at each iteration Cs : Cs : list of S np.ndarray(ns,ns) Metric cost matrices Returns ---------- C updated """ tmpsum = sum([lambdas[s] * np.dot(T[s].T, Cs[s]).dot(T[s]) for s in range(len(T))]) ppt = np.outer(p, p) return(np.exp(np.divide(tmpsum, ppt))) def gromov_wasserstein(C1, C2, p, q, loss_fun, epsilon, numItermax=1000, stopThr=1e-9, verbose=False, log=False): """ Returns the gromov-wasserstein coupling between the two measured similarity matrices (C1,p) and (C2,q) The function solves the following optimization problem: .. math:: \GW = arg\min_T \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}-\epsilon(H(T)) s.t. \GW 1 = p \GW^T 1= q \GW\geq 0 Where : C1 : Metric cost matrix in the source space C2 : Metric cost matrix in the target space p : distribution in the source space q : distribution in the target space L : loss function to account for the misfit between the similarity matrices H : entropy Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space p : np.ndarray(ns,) distribution in the source space q : np.ndarray(nt) distribution in the target space loss_fun : loss function used for the solver either 'square_loss' or 'kl_loss' epsilon : float Regularization term >0 numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True forcing : np.ndarray(N,2) list of forced couplings (where N is the number of forcing) Returns ------- T : coupling between the two spaces that minimizes : \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}-\epsilon(H(T)) """ C1 = np.asarray(C1, dtype=np.float64) C2 = np.asarray(C2, dtype=np.float64) T = np.outer(p, q) # Initialization cpt = 0 err = 1 while (err > stopThr and cpt < numItermax): Tprev = T if loss_fun == 'square_loss': tens = tensor_square_loss(C1, C2, T) elif loss_fun == 'kl_loss': tens = tensor_kl_loss(C1, C2, T) T = sinkhorn(p, q, tens, epsilon) if cpt % 10 == 0: # we can speed up the process by checking for the error only all the 10th iterations err = np.linalg.norm(T - Tprev) if log: log['err'].append(err) if verbose: if cpt % 200 == 0: print('{:5s}|{:12s}'.format( 'It.', 'Err') + '\n' + '-' * 19) print('{:5d}|{:8e}|'.format(cpt, err)) cpt = cpt + 1 if log: return T, log else: return T def gromov_wasserstein2(C1, C2, p, q, loss_fun, epsilon, numItermax=1000, stopThr=1e-9, verbose=False, log=False): """ Returns the gromov-wasserstein discrepancy between the two measured similarity matrices (C1,p) and (C2,q) The function solves the following optimization problem: .. math:: \GW_Dist = \min_T \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}-\epsilon(H(T)) Where : C1 : Metric cost matrix in the source space C2 : Metric cost matrix in the target space p : distribution in the source space q : distribution in the target space L : loss function to account for the misfit between the similarity matrices H : entropy Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space p : np.ndarray(ns,) distribution in the source space q : np.ndarray(nt) distribution in the target space loss_fun : loss function used for the solver either 'square_loss' or 'kl_loss' epsilon : float Regularization term >0 numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True forcing : np.ndarray(N,2) list of forced couplings (where N is the number of forcing) Returns ------- T : coupling between the two spaces that minimizes : \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}-\epsilon(H(T)) """ if log: gw, logv = gromov_wasserstein( C1, C2, p, q, loss_fun, epsilon, numItermax, stopThr, verbose, log) else: gw = gromov_wasserstein(C1, C2, p, q, loss_fun, epsilon, numItermax, stopThr, verbose, log) if loss_fun == 'square_loss': gw_dist = np.sum(gw * tensor_square_loss(C1, C2, gw)) elif loss_fun == 'kl_loss': gw_dist = np.sum(gw * tensor_kl_loss(C1, C2, gw)) if log: return gw_dist, logv else: return gw_dist def gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun, epsilon, numItermax=1000, stopThr=1e-9, verbose=False, log=False): """ Returns the gromov-wasserstein barycenters of S measured similarity matrices (Cs)_{s=1}^{s=S} The function solves the following optimization problem: .. math:: C = argmin_C\in R^NxN \sum_s \lambda_s GW(C,Cs,p,ps) Where : Cs : metric cost matrix ps : distribution Parameters ---------- N : Integer Size of the targeted barycenter Cs : list of S np.ndarray(ns,ns) Metric cost matrices ps : list of S np.ndarray(ns,) sample weights in the S spaces p : np.ndarray(N,) weights in the targeted barycenter lambdas : list of the S spaces' weights L : tensor-matrix multiplication function based on specific loss function update : function(p,lambdas,T,Cs) that updates C according to a specific Kernel with the S Ts couplings calculated at each iteration epsilon : float Regularization term >0 numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshol on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- C : Similarity matrix in the barycenter space (permutated arbitrarily) """ S = len(Cs) Cs = [np.asarray(Cs[s], dtype=np.float64) for s in range(S)] lambdas = np.asarray(lambdas, dtype=np.float64) # Initialization of C : random SPD matrix xalea = np.random.randn(N, 2) C = dist(xalea, xalea) C /= C.max() cpt = 0 err = 1 error = [] while(err > stopThr and cpt < numItermax): Cprev = C T = [gromov_wasserstein(Cs[s], C, ps[s], p, loss_fun, epsilon, numItermax, 1e-5, verbose, log) for s in range(S)] if loss_fun == 'square_loss': C = update_square_loss(p, lambdas, T, Cs) elif loss_fun == 'kl_loss': C = update_kl_loss(p, lambdas, T, Cs) if cpt % 10 == 0: # we can speed up the process by checking for the error only all the 10th iterations err = np.linalg.norm(C - Cprev) error.append(err) if log: log['err'].append(err) if verbose: if cpt % 200 == 0: print('{:5s}|{:12s}'.format( 'It.', 'Err') + '\n' + '-' * 19) print('{:5d}|{:8e}|'.format(cpt, err)) cpt = cpt + 1 return C