# -*- coding: utf-8 -*- """ Gromov-Wasserstein transport method """ # Author: Erwan Vautier # Nicolas Courty # Rémi Flamary # # License: MIT License import numpy as np from .bregman import sinkhorn from .utils import dist from .optim import cg def init_matrix(C1, C2, T, p, q, loss_fun='square_loss'): """ Return loss matrices and tensors for Gromov-Wasserstein fast computation Returns the value of \mathcal{L}(C1,C2) \otimes T with the selected loss function as the loss function of Gromow-Wasserstein discrepancy. The matrices are computed as described in Proposition 1 in [12] Where : * C1 : Metric cost matrix in the source space * C2 : Metric cost matrix in the target space * T : A coupling between those two spaces The square-loss function L(a,b)=(1/2)*|a-b|^2 is read as : L(a,b) = f1(a)+f2(b)-h1(a)*h2(b) with : * f1(a)=(a^2)/2 * f2(b)=(b^2)/2 * h1(a)=a * h2(b)=b The kl-loss function L(a,b)=a*log(a/b)-a+b is read as : L(a,b) = f1(a)+f2(b)-h1(a)*h2(b) with : * f1(a)=a*log(a)-a * f2(b)=b * h1(a)=a * h2(b)=log(b) Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space T : ndarray, shape (ns, nt) Coupling between source and target spaces p : ndarray, shape (ns,) Returns ------- constC : ndarray, shape (ns, nt) Constant C matrix in Eq. (6) hC1 : ndarray, shape (ns, ns) h1(C1) matrix in Eq. (6) hC2 : ndarray, shape (nt, nt) h2(C) matrix in Eq. (6) References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ if loss_fun == 'square_loss': def f1(a): return (a**2) / 2 def f2(b): return (b**2) / 2 def h1(a): return a def h2(b): return b elif loss_fun == 'kl_loss': def f1(a): return a * np.log(a + 1e-15) - a def f2(b): return b def h1(a): return a def h2(b): return np.log(b + 1e-15) constC1 = np.dot(np.dot(f1(C1), p.reshape(-1, 1)), np.ones(len(q)).reshape(1, -1)) constC2 = np.dot(np.ones(len(p)).reshape(-1, 1), np.dot(q.reshape(1, -1), f2(C2).T)) constC = constC1 + constC2 hC1 = h1(C1) hC2 = h2(C2) return constC, hC1, hC2 def tensor_product(constC, hC1, hC2, T): """ Return the tensor for Gromov-Wasserstein fast computation The tensor is computed as described in Proposition 1 Eq. (6) in [12]. Parameters ---------- constC : ndarray, shape (ns, nt) Constant C matrix in Eq. (6) hC1 : ndarray, shape (ns, ns) h1(C1) matrix in Eq. (6) hC2 : ndarray, shape (nt, nt) h2(C) matrix in Eq. (6) Returns ------- tens : ndarray, shape (ns, nt) \mathcal{L}(C1,C2) \otimes T tensor-matrix multiplication result References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ A = -np.dot(hC1, T).dot(hC2.T) tens = constC + A # tens -= tens.min() return tens def gwloss(constC, hC1, hC2, T): """ Return the Loss for Gromov-Wasserstein The loss is computed as described in Proposition 1 Eq. (6) in [12]. Parameters ---------- constC : ndarray, shape (ns, nt) Constant C matrix in Eq. (6) hC1 : ndarray, shape (ns, ns) h1(C1) matrix in Eq. (6) hC2 : ndarray, shape (nt, nt) h2(C) matrix in Eq. (6) T : ndarray, shape (ns, nt) Current value of transport matrix T Returns ------- loss : float Gromov Wasserstein loss References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ tens = tensor_product(constC, hC1, hC2, T) return np.sum(tens * T) def gwggrad(constC, hC1, hC2, T): """ Return the gradient for Gromov-Wasserstein The gradient is computed as described in Proposition 2 in [12]. Parameters ---------- constC : ndarray, shape (ns, nt) Constant C matrix in Eq. (6) hC1 : ndarray, shape (ns, ns) h1(C1) matrix in Eq. (6) hC2 : ndarray, shape (nt, nt) h2(C) matrix in Eq. (6) T : ndarray, shape (ns, nt) Current value of transport matrix T Returns ------- grad : ndarray, shape (ns, nt) Gromov Wasserstein gradient References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ return 2 * tensor_product(constC, hC1, hC2, T) # [12] Prop. 2 misses a 2 factor def update_square_loss(p, lambdas, T, Cs): """ Updates C according to the L2 Loss kernel with the S Ts couplings calculated at each iteration Parameters ---------- p : ndarray, shape (N,) masses in the targeted barycenter lambdas : list of float list of the S spaces' weights T : list of S np.ndarray(ns,N) the S Ts couplings calculated at each iteration Cs : list of S ndarray, shape(ns,ns) Metric cost matrices Returns ---------- C : ndarray, shape (nt,nt) updated C matrix """ tmpsum = sum([lambdas[s] * np.dot(T[s].T, Cs[s]).dot(T[s]) for s in range(len(T))]) ppt = np.outer(p, p) return np.divide(tmpsum, ppt) def update_kl_loss(p, lambdas, T, Cs): """ Updates C according to the KL Loss kernel with the S Ts couplings calculated at each iteration Parameters ---------- p : ndarray, shape (N,) weights in the targeted barycenter lambdas : list of the S spaces' weights T : list of S np.ndarray(ns,N) the S Ts couplings calculated at each iteration Cs : list of S ndarray, shape(ns,ns) Metric cost matrices Returns ---------- C : ndarray, shape (ns,ns) updated C matrix """ tmpsum = sum([lambdas[s] * np.dot(T[s].T, Cs[s]).dot(T[s]) for s in range(len(T))]) ppt = np.outer(p, p) return np.exp(np.divide(tmpsum, ppt)) def gromov_wasserstein(C1, C2, p, q, loss_fun, log=False, **kwargs): """ Returns the gromov-wasserstein transport between (C1,p) and (C2,q) The function solves the following optimization problem: .. math:: \GW_Dist = \min_T \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l} Where : C1 : Metric cost matrix in the source space C2 : Metric cost matrix in the target space p : distribution in the source space q : distribution in the target space L : loss function to account for the misfit between the similarity matrices H : entropy Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space p : ndarray, shape (ns,) distribution in the source space q : ndarray, shape (nt,) distribution in the target space loss_fun : string loss function used for the solver either 'square_loss' or 'kl_loss' max_iter : int, optional Max number of iterations tol : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True **kwargs : dict parameters can be directly pased to the ot.optim.cg solver Returns ------- T : ndarray, shape (ns, nt) coupling between the two spaces that minimizes : \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l} log : dict convergence information and loss References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. .. [13] Mémoli, Facundo. Gromov–Wasserstein distances and the metric approach to object matching. Foundations of computational mathematics 11.4 (2011): 417-487. """ T = np.eye(len(p), len(q)) constC, hC1, hC2 = init_matrix(C1, C2, T, p, q, loss_fun) G0 = p[:, None] * q[None, :] def f(G): return gwloss(constC, hC1, hC2, G) def df(G): return gwggrad(constC, hC1, hC2, G) if log: res, log = cg(p, q, 0, 1, f, df, G0, log=True, **kwargs) log['gw_dist'] = gwloss(constC, hC1, hC2, res) return res, log else: return cg(p, q, 0, 1, f, df, G0, **kwargs) def gromov_wasserstein2(C1, C2, p, q, loss_fun, log=False, **kwargs): """ Returns the gromov-wasserstein discrepancy between (C1,p) and (C2,q) The function solves the following optimization problem: .. math:: \GW_Dist = \min_T \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l} Where : C1 : Metric cost matrix in the source space C2 : Metric cost matrix in the target space p : distribution in the source space q : distribution in the target space L : loss function to account for the misfit between the similarity matrices H : entropy Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space p : ndarray, shape (ns,) distribution in the source space q : ndarray, shape (nt,) distribution in the target space loss_fun : string loss function used for the solver either 'square_loss' or 'kl_loss' max_iter : int, optional Max number of iterations tol : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gw_dist : float Gromov-Wasserstein distance log : dict convergence information and Coupling marix References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. .. [13] Mémoli, Facundo. Gromov–Wasserstein distances and the metric approach to object matching. Foundations of computational mathematics 11.4 (2011): 417-487. """ T = np.eye(len(p), len(q)) constC, hC1, hC2 = init_matrix(C1, C2, T, p, q, loss_fun) G0 = p[:, None] * q[None, :] def f(G): return gwloss(constC, hC1, hC2, G) def df(G): return gwggrad(constC, hC1, hC2, G) res, log = cg(p, q, 0, 1, f, df, G0, log=True, **kwargs) log['gw_dist'] = gwloss(constC, hC1, hC2, res) log['T'] = res if log: return log['gw_dist'], log else: return log['gw_dist'] def entropic_gromov_wasserstein(C1, C2, p, q, loss_fun, epsilon, max_iter=1000, tol=1e-9, verbose=False, log=False): """ Returns the gromov-wasserstein transport between (C1,p) and (C2,q) (C1,p) and (C2,q) The function solves the following optimization problem: .. math:: \GW = arg\min_T \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}-\epsilon(H(T)) s.t. \GW 1 = p \GW^T 1= q \GW\geq 0 Where : C1 : Metric cost matrix in the source space C2 : Metric cost matrix in the target space p : distribution in the source space q : distribution in the target space L : loss function to account for the misfit between the similarity matrices H : entropy Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space p : ndarray, shape (ns,) distribution in the source space q : ndarray, shape (nt,) distribution in the target space loss_fun : string loss function used for the solver either 'square_loss' or 'kl_loss' epsilon : float Regularization term >0 max_iter : int, optional Max number of iterations tol : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- T : ndarray, shape (ns, nt) coupling between the two spaces that minimizes : \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}-\epsilon(H(T)) References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ C1 = np.asarray(C1, dtype=np.float64) C2 = np.asarray(C2, dtype=np.float64) T = np.outer(p, q) # Initialization constC, hC1, hC2 = init_matrix(C1, C2, T, p, q, loss_fun) cpt = 0 err = 1 if log: log = {'err': []} while (err > tol and cpt < max_iter): Tprev = T # compute the gradient tens = gwggrad(constC, hC1, hC2, T) T = sinkhorn(p, q, tens, epsilon) if cpt % 10 == 0: # we can speed up the process by checking for the error only all # the 10th iterations err = np.linalg.norm(T - Tprev) if log: log['err'].append(err) if verbose: if cpt % 200 == 0: print('{:5s}|{:12s}'.format( 'It.', 'Err') + '\n' + '-' * 19) print('{:5d}|{:8e}|'.format(cpt, err)) cpt += 1 if log: log['gw_dist'] = gwloss(constC, hC1, hC2, T) return T, log else: return T def entropic_gromov_wasserstein2(C1, C2, p, q, loss_fun, epsilon, max_iter=1000, tol=1e-9, verbose=False, log=False): """ Returns the entropic gromov-wasserstein discrepancy between the two measured similarity matrices (C1,p) and (C2,q) The function solves the following optimization problem: .. math:: \GW_Dist = \min_T \sum_{i,j,k,l} L(C1_{i,k},C2_{j,l})*T_{i,j}*T_{k,l}-\epsilon(H(T)) Where : C1 : Metric cost matrix in the source space C2 : Metric cost matrix in the target space p : distribution in the source space q : distribution in the target space L : loss function to account for the misfit between the similarity matrices H : entropy Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space p : ndarray, shape (ns,) distribution in the source space q : ndarray, shape (nt,) distribution in the target space loss_fun : string loss function used for the solver either 'square_loss' or 'kl_loss' epsilon : float Regularization term >0 max_iter : int, optional Max number of iterations tol : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gw_dist : float Gromov-Wasserstein distance References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ gw, logv = entropic_gromov_wasserstein( C1, C2, p, q, loss_fun, epsilon, max_iter, tol, verbose, log=True) logv['T'] = gw if log: return logv['gw_dist'], logv else: return logv['gw_dist'] def entropic_gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun, epsilon, max_iter=1000, tol=1e-9, verbose=False, log=False, init_C=None): """ Returns the gromov-wasserstein barycenters of S measured similarity matrices (Cs)_{s=1}^{s=S} The function solves the following optimization problem: .. math:: C = argmin_C\in R^{NxN} \sum_s \lambda_s GW(C,Cs,p,ps) Where : Cs : metric cost matrix ps : distribution Parameters ---------- N : Integer Size of the targeted barycenter Cs : list of S np.ndarray(ns,ns) Metric cost matrices ps : list of S np.ndarray(ns,) sample weights in the S spaces p : ndarray, shape(N,) weights in the targeted barycenter lambdas : list of float list of the S spaces' weights loss_fun : tensor-matrix multiplication function based on specific loss function update : function(p,lambdas,T,Cs) that updates C according to a specific Kernel with the S Ts couplings calculated at each iteration epsilon : float Regularization term >0 max_iter : int, optional Max number of iterations tol : float, optional Stop threshol on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True init_C : bool, ndarray, shape(N,N) random initial value for the C matrix provided by user Returns ------- C : ndarray, shape (N, N) Similarity matrix in the barycenter space (permutated arbitrarily) References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ S = len(Cs) Cs = [np.asarray(Cs[s], dtype=np.float64) for s in range(S)] lambdas = np.asarray(lambdas, dtype=np.float64) # Initialization of C : random SPD matrix (if not provided by user) if init_C is None: xalea = np.random.randn(N, 2) C = dist(xalea, xalea) C /= C.max() else: C = init_C cpt = 0 err = 1 error = [] while(err > tol and cpt < max_iter): Cprev = C T = [entropic_gromov_wasserstein(Cs[s], C, ps[s], p, loss_fun, epsilon, max_iter, 1e-5, verbose, log) for s in range(S)] if loss_fun == 'square_loss': C = update_square_loss(p, lambdas, T, Cs) elif loss_fun == 'kl_loss': C = update_kl_loss(p, lambdas, T, Cs) if cpt % 10 == 0: # we can speed up the process by checking for the error only all # the 10th iterations err = np.linalg.norm(C - Cprev) error.append(err) if log: log['err'].append(err) if verbose: if cpt % 200 == 0: print('{:5s}|{:12s}'.format( 'It.', 'Err') + '\n' + '-' * 19) print('{:5d}|{:8e}|'.format(cpt, err)) cpt += 1 return C def gromov_barycenters(N, Cs, ps, p, lambdas, loss_fun, max_iter=1000, tol=1e-9, verbose=False, log=False, init_C=None): """ Returns the gromov-wasserstein barycenters of S measured similarity matrices (Cs)_{s=1}^{s=S} The function solves the following optimization problem with block coordinate descent: .. math:: C = argmin_C\in R^NxN \sum_s \lambda_s GW(C,Cs,p,ps) Where : Cs : metric cost matrix ps : distribution Parameters ---------- N : Integer Size of the targeted barycenter Cs : list of S np.ndarray(ns,ns) Metric cost matrices ps : list of S np.ndarray(ns,) sample weights in the S spaces p : ndarray, shape(N,) weights in the targeted barycenter lambdas : list of float list of the S spaces' weights loss_fun : tensor-matrix multiplication function based on specific loss function update : function(p,lambdas,T,Cs) that updates C according to a specific Kernel with the S Ts couplings calculated at each iteration max_iter : int, optional Max number of iterations tol : float, optional Stop threshol on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True init_C : bool, ndarray, shape(N,N) random initial value for the C matrix provided by user Returns ------- C : ndarray, shape (N, N) Similarity matrix in the barycenter space (permutated arbitrarily) References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ S = len(Cs) Cs = [np.asarray(Cs[s], dtype=np.float64) for s in range(S)] lambdas = np.asarray(lambdas, dtype=np.float64) # Initialization of C : random SPD matrix (if not provided by user) if init_C is None: xalea = np.random.randn(N, 2) C = dist(xalea, xalea) C /= C.max() else: C = init_C cpt = 0 err = 1 error = [] while(err > tol and cpt < max_iter): Cprev = C T = [gromov_wasserstein(Cs[s], C, ps[s], p, loss_fun, numItermax=max_iter, stopThr=1e-5, verbose=verbose, log=log) for s in range(S)] if loss_fun == 'square_loss': C = update_square_loss(p, lambdas, T, Cs) elif loss_fun == 'kl_loss': C = update_kl_loss(p, lambdas, T, Cs) if cpt % 10 == 0: # we can speed up the process by checking for the error only all # the 10th iterations err = np.linalg.norm(C - Cprev) error.append(err) if log: log['err'].append(err) if verbose: if cpt % 200 == 0: print('{:5s}|{:12s}'.format( 'It.', 'Err') + '\n' + '-' * 19) print('{:5d}|{:8e}|'.format(cpt, err)) cpt += 1 return C