# -*- coding: utf-8 -*- """ Optimization algorithms for OT """ import numpy as np from scipy.optimize.linesearch import scalar_search_armijo from .lp import emd from .bregman import sinkhorn # The corresponding scipy function does not work for matrices def line_search_armijo(f,xk,pk,gfk,old_fval,args=(),c1=1e-4,alpha0=0.99): """ Armijo linesearch function that works with matrices find an approximate minimum of f(xk+alpha*pk) that satifies the armijo conditions. Parameters ---------- f : function loss function xk : np.ndarray initial position pk : np.ndarray descent direction gfk : np.ndarray gradient of f at xk old_fval : float loss value at xk args : tuple, optional arguments given to f c1 : float, optional c1 const in armijo rule (>0) alpha0 : float, optional initial step (>0) Returns ------- alpha : float step that satisfy armijo conditions fc : int nb of function call fa : float loss value at step alpha """ xk = np.atleast_1d(xk) fc = [0] def phi(alpha1): fc[0] += 1 return f(xk + alpha1*pk, *args) if old_fval is None: phi0 = phi(0.) else: phi0 = old_fval derphi0 = np.sum(pk*gfk) # Quickfix for matrices alpha,phi1 = scalar_search_armijo(phi,phi0,derphi0,c1=c1,alpha0=alpha0) return alpha,fc[0],phi1 def cg(a,b,M,reg,f,df,G0=None,numItermax = 200,stopThr=1e-9,verbose=False,log=False): """ Solve the general regularized OT problem with conditional gradient The function solves the following optimization problem: .. math:: \gamma = arg\min_\gamma <\gamma,M>_F + reg*f(\gamma) s.t. \gamma 1 = a \gamma^T 1= b \gamma\geq 0 where : - M is the (ns,nt) metric cost matrix - :math:`f` is the regularization term ( and df is its gradient) - a and b are source and target weights (sum to 1) The algorithm used for solving the problem is conditional gradient as discussed in [1]_ Parameters ---------- a : np.ndarray (ns,) samples weights in the source domain b : np.ndarray (nt,) samples in the target domain M : np.ndarray (ns,nt) loss matrix reg : float Regularization term >0 G0 : np.ndarray (ns,nt), optional initial guess (default is indep joint density) numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshol on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (ns x nt) ndarray Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters References ---------- .. [1] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882. See Also -------- ot.lp.emd : Unregularized optimal ransport ot.bregman.sinkhorn : Entropic regularized optimal transport """ loop=1 if log: log={'loss':[]} if G0 is None: G=np.outer(a,b) else: G=G0 def cost(G): return np.sum(M*G)+reg*f(G) f_val=cost(G) if log: log['loss'].append(f_val) it=0 if verbose: print('{:5s}|{:12s}|{:8s}'.format('It.','Loss','Delta loss')+'\n'+'-'*32) print('{:5d}|{:8e}|{:8e}'.format(it,f_val,0)) while loop: it+=1 old_fval=f_val # problem linearization Mi=M+reg*df(G) # set M positive Mi+=Mi.min() # solve linear program Gc=emd(a,b,Mi) deltaG=Gc-G # line search alpha,fc,f_val = line_search_armijo(cost,G,deltaG,Mi,f_val) G=G+alpha*deltaG # test convergence if it>=numItermax: loop=0 delta_fval=(f_val-old_fval)/abs(f_val) if abs(delta_fval)_F + reg1\cdot\Omega(\gamma) + reg2\cdot f(\gamma) s.t. \gamma 1 = a \gamma^T 1= b \gamma\geq 0 where : - M is the (ns,nt) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - :math:`f` is the regularization term ( and df is its gradient) - a and b are source and target weights (sum to 1) The algorithm used for solving the problem is the generalized conditional gradient as discussed in [5,7]_ Parameters ---------- a : np.ndarray (ns,) samples weights in the source domain b : np.ndarray (nt,) samples in the target domain M : np.ndarray (ns,nt) loss matrix reg1 : float Entropic Regularization term >0 reg2 : float Second Regularization term >0 G0 : np.ndarray (ns,nt), optional initial guess (default is indep joint density) numItermax : int, optional Max number of iterations numInnerItermax : int, optional Max number of iterations of Sinkhorn stopThr : float, optional Stop threshol on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (ns x nt) ndarray Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters References ---------- .. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1 .. [7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567. See Also -------- ot.optim.cg : conditional gradient """ loop=1 if log: log={'loss':[]} if G0 is None: G=np.outer(a,b) else: G=G0 def cost(G): return np.sum(M*G)+ reg1*np.sum(G*np.log(G)) + reg2*f(G) f_val=cost(G) if log: log['loss'].append(f_val) it=0 if verbose: print('{:5s}|{:12s}|{:8s}'.format('It.','Loss','Delta loss')+'\n'+'-'*32) print('{:5d}|{:8e}|{:8e}'.format(it,f_val,0)) while loop: it+=1 old_fval=f_val # problem linearization Mi=M+reg2*df(G) # solve linear program with Sinkhorn #Gc = sinkhorn_stabilized(a,b, Mi, reg1, numItermax = numInnerItermax) Gc = sinkhorn(a,b, Mi, reg1, numItermax = numInnerItermax) deltaG=Gc-G # line search dcost=Mi+reg1*(1+np.log(G)) #?? alpha,fc,f_val = line_search_armijo(cost,G,deltaG,dcost,f_val) G=G+alpha*deltaG # test convergence if it>=numItermax: loop=0 delta_fval=(f_val-old_fval)/abs(f_val) if abs(delta_fval)