# Author: Kilian Fatras # # License: MIT License import numpy as np def coordinate_gradient(b, M, reg, v, i): ''' Compute the coordinate gradient update for regularized discrete distributions for (i, :) The function computes the gradient of the semi dual problem: .. math:: \W_varepsilon(a, b) = \max_\v \sum_i (\sum_j v_j * b_j - \reg log(\sum_j exp((v_j - M_{i,j})/reg) * b_j)) * a_i where : - M is the (ns,nt) metric cost matrix - v is a dual variable in R^J - reg is the regularization term - a and b are source and target weights (sum to 1) The algorithm used for solving the problem is the ASGD & SAG algorithms as proposed in [18]_ [alg.1 & alg.2] Parameters ---------- b : np.ndarray(nt,), target measure M : np.ndarray(ns, nt), cost matrix reg : float nu, Regularization term > 0 v : np.ndarray(nt,), optimization vector i : number int, picked number i Returns ------- coordinate gradient : np.ndarray(nt,) Examples -------- >>> n_source = 7 >>> n_target = 4 >>> reg = 1 >>> numItermax = 300000 >>> lr = 1 >>> a = ot.utils.unif(n_source) >>> b = ot.utils.unif(n_target) >>> rng = np.random.RandomState(0) >>> X_source = rng.randn(n_source, 2) >>> Y_target = rng.randn(n_target, 2) >>> M = ot.dist(X_source, Y_target) >>> method = "ASGD" >>> asgd_pi = stochastic.transportation_matrix_entropic(a, b, M, reg, method, numItermax, lr) >>> print(asgd_pi) References ---------- [Genevay et al., 2016] : Stochastic Optimization for Large-scale Optimal Transport, Advances in Neural Information Processing Systems (2016), arXiv preprint arxiv:1605.08527. ''' r = M[i, :] - v exp_v = np.exp(-r / reg) * b khi = exp_v / (np.sum(exp_v)) return b - khi def sag_entropic_transport(a, b, M, reg, numItermax=10000, lr=0.1): ''' Compute the SAG algorithm to solve the regularized discrete measures optimal transport max problem The function solves the following optimization problem: .. math:: \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) s.t. \gamma 1 = a \gamma^T 1= b \gamma \geq 0 where : - M is the (ns,nt) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are source and target weights (sum to 1) The algorithm used for solving the problem is the SAG algorithm as proposed in [18]_ [alg.1] Parameters ---------- a : np.ndarray(ns,), source measure b : np.ndarray(nt,), target measure M : np.ndarray(ns, nt), cost matrix reg : float number, Regularization term > 0 numItermax : int number number of iteration lr : float number learning rate Returns ------- v : np.ndarray(nt,) dual variable Examples -------- >>> n_source = 7 >>> n_target = 4 >>> reg = 1 >>> numItermax = 300000 >>> lr = 1 >>> a = ot.utils.unif(n_source) >>> b = ot.utils.unif(n_target) >>> rng = np.random.RandomState(0) >>> X_source = rng.randn(n_source, 2) >>> Y_target = rng.randn(n_target, 2) >>> M = ot.dist(X_source, Y_target) >>> method = "SAG" >>> sag_pi = stochastic.transportation_matrix_entropic(a, b, M, reg, method, numItermax, lr) >>> print(asgd_pi) References ---------- [Genevay et al., 2016] : Stochastic Optimization for Large-scale Optimal Transport, Advances in Neural Information Processing Systems (2016), arXiv preprint arxiv:1605.08527. ''' n_source = np.shape(M)[0] n_target = np.shape(M)[1] v = np.zeros(n_target) stored_gradient = np.zeros((n_source, n_target)) sum_stored_gradient = np.zeros(n_target) for _ in range(numItermax): i = np.random.randint(n_source) cur_coord_grad = a[i] * coordinate_gradient(b, M, reg, v, i) sum_stored_gradient += (cur_coord_grad - stored_gradient[i]) stored_gradient[i] = cur_coord_grad v += lr * (1. / n_source) * sum_stored_gradient return v def averaged_sgd_entropic_transport(b, M, reg, numItermax=300000, lr=1): ''' Compute the ASGD algorithm to solve the regularized semi contibous measures optimal transport max problem The function solves the following optimization problem: .. math:: \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) s.t. \gamma 1 = a \gamma^T 1= b \gamma \geq 0 where : - M is the (ns,nt) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are source and target weights (sum to 1) The algorithm used for solving the problem is the ASGD algorithm as proposed in [18]_ [alg.2] Parameters ---------- b : np.ndarray(nt,), target measure M : np.ndarray(ns, nt), cost matrix reg : float number, Regularization term > 0 numItermax : int number number of iteration lr : float number learning rate Returns ------- ave_v : np.ndarray(nt,) optimization vector Examples -------- >>> n_source = 7 >>> n_target = 4 >>> reg = 1 >>> numItermax = 300000 >>> lr = 1 >>> a = ot.utils.unif(n_source) >>> b = ot.utils.unif(n_target) >>> rng = np.random.RandomState(0) >>> X_source = rng.randn(n_source, 2) >>> Y_target = rng.randn(n_target, 2) >>> M = ot.dist(X_source, Y_target) >>> method = "ASGD" >>> asgd_pi = stochastic.transportation_matrix_entropic(a, b, M, reg, method, numItermax, lr) >>> print(asgd_pi) References ---------- [Genevay et al., 2016] : Stochastic Optimization for Large-scale Optimal Transport, Advances in Neural Information Processing Systems (2016), arXiv preprint arxiv:1605.08527. ''' n_source = np.shape(M)[0] n_target = np.shape(M)[1] cur_v = np.zeros(n_target) ave_v = np.zeros(n_target) for cur_iter in range(numItermax): k = cur_iter + 1 i = np.random.randint(n_source) cur_coord_grad = coordinate_gradient(b, M, reg, cur_v, i) cur_v += (lr / np.sqrt(k)) * cur_coord_grad ave_v = (1. / k) * cur_v + (1 - 1. / k) * ave_v return ave_v def c_transform_entropic(b, M, reg, v): ''' The goal is to recover u from the c-transform. The function computes the c_transform of a dual variable from the other dual variable: .. math:: u = v^{c,reg} = -reg \sum_j exp((v - M)/reg) b_j where : - M is the (ns,nt) metric cost matrix - u, v are dual variables in R^IxR^J - reg is the regularization term It is used to recover an optimal u from optimal v solving the semi dual problem, see Proposition 2.1 of [18]_ Parameters ---------- b : np.ndarray(nt,) target measure M : np.ndarray(ns, nt) cost matrix reg : float regularization term > 0 v : np.ndarray(nt,) dual variable Returns ------- u : np.ndarray(ns,) Examples -------- >>> n_source = 7 >>> n_target = 4 >>> reg = 1 >>> numItermax = 300000 >>> lr = 1 >>> a = ot.utils.unif(n_source) >>> b = ot.utils.unif(n_target) >>> rng = np.random.RandomState(0) >>> X_source = rng.randn(n_source, 2) >>> Y_target = rng.randn(n_target, 2) >>> M = ot.dist(X_source, Y_target) >>> method = "ASGD" >>> asgd_pi = stochastic.transportation_matrix_entropic(a, b, M, reg, method, numItermax, lr) >>> print(asgd_pi) References ---------- [Genevay et al., 2016] : Stochastic Optimization for Large-scale Optimal Transport, Advances in Neural Information Processing Systems (2016), arXiv preprint arxiv:1605.08527. ''' n_source = np.shape(M)[0] u = np.zeros(n_source) for i in range(n_source): r = M[i, :] - v exp_v = np.exp(-r / reg) * b u[i] = - reg * np.log(np.sum(exp_v)) return u def transportation_matrix_entropic(a, b, M, reg, method, numItermax=10000, lr=0.1): ''' Compute the transportation matrix to solve the regularized discrete measures optimal transport max problem The function solves the following optimization problem: .. math:: \gamma = arg\min_\gamma <\gamma,M>_F + reg\cdot\Omega(\gamma) s.t. \gamma 1 = a \gamma^T 1= b \gamma \geq 0 where : - M is the (ns,nt) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are source and target weights (sum to 1) The algorithm used for solving the problem is the SAG or ASGD algorithms as proposed in [18]_ Parameters ---------- a : np.ndarray(ns,), source measure b : np.ndarray(nt,), target measure M : np.ndarray(ns, nt), cost matrix reg : float number, Regularization term > 0 methode : str, used method (SAG or ASGD) numItermax : int number number of iteration lr : float number learning rate n_source : int number size of the source measure n_target : int number size of the target measure Returns ------- pi : np.ndarray(ns, nt) transportation matrix Examples -------- >>> n_source = 7 >>> n_target = 4 >>> reg = 1 >>> numItermax = 300000 >>> lr = 1 >>> a = ot.utils.unif(n_source) >>> b = ot.utils.unif(n_target) >>> rng = np.random.RandomState(0) >>> X_source = rng.randn(n_source, 2) >>> Y_target = rng.randn(n_target, 2) >>> M = ot.dist(X_source, Y_target) >>> method = "ASGD" >>> asgd_pi = stochastic.transportation_matrix_entropic(a, b, M, reg, method, numItermax, lr) >>> print(asgd_pi) References ---------- [Genevay et al., 2016] : Stochastic Optimization for Large-scale Optimal Transport, Advances in Neural Information Processing Systems (2016), arXiv preprint arxiv:1605.08527. ''' if method.lower() == "sag": opt_v = sag_entropic_transport(a, b, M, reg, numItermax, lr) elif method.lower() == "asgd": opt_v = averaged_sgd_entropic_transport(b, M, reg, numItermax, lr) else: print("Please, select your method between SAG and ASGD") return None opt_u = c_transform_entropic(b, M, reg, opt_v) pi = (np.exp((opt_u[:, None] + opt_v[None, :] - M[:, :]) / reg) * a[:, None] * b[None, :]) return pi