summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_OTDA_color_images.py
blob: 68eee4438534e0eea13897da182f7b6bf1086552 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# -*- coding: utf-8 -*-
"""
========================================================
OT for domain adaptation with image color adaptation [6]
========================================================

[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882.
"""

import numpy as np
import scipy.ndimage as spi
import matplotlib.pylab as pl
import ot


#%% Loading images

I1=spi.imread('../data/ocean_day.jpg').astype(np.float64)/256
I2=spi.imread('../data/ocean_sunset.jpg').astype(np.float64)/256

#%% Plot images

pl.figure(1)

pl.subplot(1,2,1)
pl.imshow(I1)
pl.title('Image 1')

pl.subplot(1,2,2)
pl.imshow(I2)
pl.title('Image 2')

pl.show()

#%% Image conversion and dataset generation

def im2mat(I):
    """Converts and image to matrix (one pixel per line)"""
    return I.reshape((I.shape[0]*I.shape[1],I.shape[2]))

def mat2im(X,shape):
    """Converts back a matrix to an image"""
    return X.reshape(shape)

X1=im2mat(I1)
X2=im2mat(I2)

# training samples
nb=1000
idx1=np.random.randint(X1.shape[0],size=(nb,))
idx2=np.random.randint(X2.shape[0],size=(nb,))

xs=X1[idx1,:]
xt=X2[idx2,:]

#%% Plot image distributions


pl.figure(2,(10,5))

pl.subplot(1,2,1)
pl.scatter(xs[:,0],xs[:,2],c=xs)
pl.axis([0,1,0,1])
pl.xlabel('Red')
pl.ylabel('Blue')
pl.title('Image 1')

pl.subplot(1,2,2)
#pl.imshow(I2)
pl.scatter(xt[:,0],xt[:,2],c=xt)
pl.axis([0,1,0,1])
pl.xlabel('Red')
pl.ylabel('Blue')
pl.title('Image 2')

pl.show()



#%% domain adaptation between images

# LP problem
da_emd=ot.da.OTDA()     # init class
da_emd.fit(xs,xt)       # fit distributions


# sinkhorn regularization
lambd=1e-1
da_entrop=ot.da.OTDA_sinkhorn()
da_entrop.fit(xs,xt,reg=lambd)



#%% prediction between images (using out of sample prediction as in [6])

X1t=da_emd.predict(X1)
X2t=da_emd.predict(X2,-1)


X1te=da_entrop.predict(X1)
X2te=da_entrop.predict(X2,-1)


def minmax(I):
    return np.minimum(np.maximum(I,0),1)

I1t=minmax(mat2im(X1t,I1.shape))
I2t=minmax(mat2im(X2t,I2.shape))

I1te=minmax(mat2im(X1te,I1.shape))
I2te=minmax(mat2im(X2te,I2.shape))

#%% plot all images

pl.figure(2,(10,8))

pl.subplot(2,3,1)

pl.imshow(I1)
pl.title('Image 1')

pl.subplot(2,3,2)
pl.imshow(I1t)
pl.title('Image 1 Adapt')


pl.subplot(2,3,3)
pl.imshow(I1te)
pl.title('Image 1 Adapt (reg)')

pl.subplot(2,3,4)

pl.imshow(I2)
pl.title('Image 2')

pl.subplot(2,3,5)
pl.imshow(I2t)
pl.title('Image 2 Adapt')


pl.subplot(2,3,6)
pl.imshow(I2te)
pl.title('Image 2 Adapt (reg)')

pl.show()