summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_OTDA_mapping_color_images.rst
blob: 60be3a477233dfd156a43e580760bcc700726978 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
.. _sphx_glr_auto_examples_plot_OTDA_mapping_color_images.py:


====================================================================================
OT for domain adaptation with image color adaptation [6] with mapping estimation [8]
====================================================================================

[6] Ferradans, S., Papadakis, N., Peyre, G., & Aujol, J. F. (2014). Regularized
    discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882.
[8] M. Perrot, N. Courty, R. Flamary, A. Habrard, "Mapping estimation for
    discrete optimal transport", Neural Information Processing Systems (NIPS), 2016.





.. rst-class:: sphx-glr-horizontal


    *

      .. image:: /auto_examples/images/sphx_glr_plot_OTDA_mapping_color_images_001.png
            :scale: 47

    *

      .. image:: /auto_examples/images/sphx_glr_plot_OTDA_mapping_color_images_002.png
            :scale: 47


.. rst-class:: sphx-glr-script-out

 Out::

    It.  |Loss        |Delta loss
    --------------------------------
        0|3.624802e+02|0.000000e+00
        1|3.547180e+02|-2.141395e-02
        2|3.545494e+02|-4.753955e-04
        3|3.544646e+02|-2.391784e-04
        4|3.544126e+02|-1.466280e-04
        5|3.543775e+02|-9.921805e-05
        6|3.543518e+02|-7.245828e-05
        7|3.543323e+02|-5.491924e-05
        8|3.543170e+02|-4.342401e-05
        9|3.543046e+02|-3.472174e-05
       10|3.542945e+02|-2.878681e-05
       11|3.542859e+02|-2.417065e-05
       12|3.542786e+02|-2.058131e-05
       13|3.542723e+02|-1.768262e-05
       14|3.542668e+02|-1.551616e-05
       15|3.542620e+02|-1.371909e-05
       16|3.542577e+02|-1.213326e-05
       17|3.542538e+02|-1.085481e-05
       18|3.542531e+02|-1.996006e-06
    It.  |Loss        |Delta loss
    --------------------------------
        0|3.555768e+02|0.000000e+00
        1|3.510071e+02|-1.285164e-02
        2|3.509110e+02|-2.736701e-04
        3|3.508748e+02|-1.031476e-04
        4|3.508506e+02|-6.910585e-05
        5|3.508330e+02|-5.014608e-05
        6|3.508195e+02|-3.839166e-05
        7|3.508090e+02|-3.004218e-05
        8|3.508005e+02|-2.417627e-05
        9|3.507935e+02|-2.004621e-05
       10|3.507876e+02|-1.681731e-05




|


.. code-block:: python


    import numpy as np
    import scipy.ndimage as spi
    import matplotlib.pylab as pl
    import ot


    #%% Loading images

    I1=spi.imread('../data/ocean_day.jpg').astype(np.float64)/256
    I2=spi.imread('../data/ocean_sunset.jpg').astype(np.float64)/256

    #%% Plot images

    pl.figure(1)

    pl.subplot(1,2,1)
    pl.imshow(I1)
    pl.title('Image 1')

    pl.subplot(1,2,2)
    pl.imshow(I2)
    pl.title('Image 2')

    pl.show()

    #%% Image conversion and dataset generation

    def im2mat(I):
        """Converts and image to matrix (one pixel per line)"""
        return I.reshape((I.shape[0]*I.shape[1],I.shape[2]))

    def mat2im(X,shape):
        """Converts back a matrix to an image"""
        return X.reshape(shape)

    X1=im2mat(I1)
    X2=im2mat(I2)

    # training samples
    nb=1000
    idx1=np.random.randint(X1.shape[0],size=(nb,))
    idx2=np.random.randint(X2.shape[0],size=(nb,))

    xs=X1[idx1,:]
    xt=X2[idx2,:]

    #%% Plot image distributions


    pl.figure(2,(10,5))

    pl.subplot(1,2,1)
    pl.scatter(xs[:,0],xs[:,2],c=xs)
    pl.axis([0,1,0,1])
    pl.xlabel('Red')
    pl.ylabel('Blue')
    pl.title('Image 1')

    pl.subplot(1,2,2)
    #pl.imshow(I2)
    pl.scatter(xt[:,0],xt[:,2],c=xt)
    pl.axis([0,1,0,1])
    pl.xlabel('Red')
    pl.ylabel('Blue')
    pl.title('Image 2')

    pl.show()



    #%% domain adaptation between images
    def minmax(I):
        return np.minimum(np.maximum(I,0),1)
    # LP problem
    da_emd=ot.da.OTDA()     # init class
    da_emd.fit(xs,xt)       # fit distributions

    X1t=da_emd.predict(X1)  # out of sample
    I1t=minmax(mat2im(X1t,I1.shape))

    # sinkhorn regularization
    lambd=1e-1
    da_entrop=ot.da.OTDA_sinkhorn()
    da_entrop.fit(xs,xt,reg=lambd)

    X1te=da_entrop.predict(X1)
    I1te=minmax(mat2im(X1te,I1.shape))

    # linear mapping estimation
    eta=1e-8   # quadratic regularization for regression
    mu=1e0     # weight of the OT linear term
    bias=True  # estimate a bias

    ot_mapping=ot.da.OTDA_mapping_linear()
    ot_mapping.fit(xs,xt,mu=mu,eta=eta,bias=bias,numItermax = 20,verbose=True)

    X1tl=ot_mapping.predict(X1) # use the estimated mapping
    I1tl=minmax(mat2im(X1tl,I1.shape))

    # nonlinear mapping estimation
    eta=1e-2   # quadratic regularization for regression
    mu=1e0     # weight of the OT linear term
    bias=False  # estimate a bias
    sigma=1    # sigma bandwidth fot gaussian kernel


    ot_mapping_kernel=ot.da.OTDA_mapping_kernel()
    ot_mapping_kernel.fit(xs,xt,mu=mu,eta=eta,sigma=sigma,bias=bias,numItermax = 10,verbose=True)

    X1tn=ot_mapping_kernel.predict(X1) # use the estimated mapping
    I1tn=minmax(mat2im(X1tn,I1.shape))
    #%% plot images


    pl.figure(2,(10,8))

    pl.subplot(2,3,1)

    pl.imshow(I1)
    pl.title('Im. 1')

    pl.subplot(2,3,2)

    pl.imshow(I2)
    pl.title('Im. 2')


    pl.subplot(2,3,3)
    pl.imshow(I1t)
    pl.title('Im. 1 Interp LP')

    pl.subplot(2,3,4)
    pl.imshow(I1te)
    pl.title('Im. 1 Interp Entrop')


    pl.subplot(2,3,5)
    pl.imshow(I1tl)
    pl.title('Im. 1 Linear mapping')

    pl.subplot(2,3,6)
    pl.imshow(I1tn)
    pl.title('Im. 1 nonlinear mapping')

    pl.show()

**Total running time of the script:** ( 1 minutes  59.537 seconds)



.. container:: sphx-glr-footer


  .. container:: sphx-glr-download

     :download:`Download Python source code: plot_OTDA_mapping_color_images.py <plot_OTDA_mapping_color_images.py>`



  .. container:: sphx-glr-download

     :download:`Download Jupyter notebook: plot_OTDA_mapping_color_images.ipynb <plot_OTDA_mapping_color_images.ipynb>`

.. rst-class:: sphx-glr-signature

    `Generated by Sphinx-Gallery <http://sphinx-gallery.readthedocs.io>`_