summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_OT_2D_samples.ipynb
blob: 41a37f3e269ec542178f3d0708a1b7d05065b455 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
{
  "nbformat_minor": 0, 
  "nbformat": 4, 
  "cells": [
    {
      "execution_count": null, 
      "cell_type": "code", 
      "source": [
        "%matplotlib inline"
      ], 
      "outputs": [], 
      "metadata": {
        "collapsed": false
      }
    }, 
    {
      "source": [
        "\n# 2D Optimal transport between empirical distributions\n\n\nIllustration of 2D optimal transport between discributions that are weighted\nsum of diracs. The OT matrix is plotted with the samples.\n\n\n"
      ], 
      "cell_type": "markdown", 
      "metadata": {}
    }, 
    {
      "execution_count": null, 
      "cell_type": "code", 
      "source": [
        "# Author: Remi Flamary <remi.flamary@unice.fr>\n#\n# License: MIT License\n\nimport numpy as np\nimport matplotlib.pylab as pl\nimport ot"
      ], 
      "outputs": [], 
      "metadata": {
        "collapsed": false
      }
    }, 
    {
      "source": [
        "Generate data\n-------------\n\n"
      ], 
      "cell_type": "markdown", 
      "metadata": {}
    }, 
    {
      "execution_count": null, 
      "cell_type": "code", 
      "source": [
        "#%% parameters and data generation\n\nn = 50  # nb samples\n\nmu_s = np.array([0, 0])\ncov_s = np.array([[1, 0], [0, 1]])\n\nmu_t = np.array([4, 4])\ncov_t = np.array([[1, -.8], [-.8, 1]])\n\nxs = ot.datasets.get_2D_samples_gauss(n, mu_s, cov_s)\nxt = ot.datasets.get_2D_samples_gauss(n, mu_t, cov_t)\n\na, b = np.ones((n,)) / n, np.ones((n,)) / n  # uniform distribution on samples\n\n# loss matrix\nM = ot.dist(xs, xt)\nM /= M.max()"
      ], 
      "outputs": [], 
      "metadata": {
        "collapsed": false
      }
    }, 
    {
      "source": [
        "Plot data\n---------\n\n"
      ], 
      "cell_type": "markdown", 
      "metadata": {}
    }, 
    {
      "execution_count": null, 
      "cell_type": "code", 
      "source": [
        "#%% plot samples\n\npl.figure(1)\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.legend(loc=0)\npl.title('Source and target distributions')\n\npl.figure(2)\npl.imshow(M, interpolation='nearest')\npl.title('Cost matrix M')"
      ], 
      "outputs": [], 
      "metadata": {
        "collapsed": false
      }
    }, 
    {
      "source": [
        "Compute EMD\n-----------\n\n"
      ], 
      "cell_type": "markdown", 
      "metadata": {}
    }, 
    {
      "execution_count": null, 
      "cell_type": "code", 
      "source": [
        "#%% EMD\n\nG0 = ot.emd(a, b, M)\n\npl.figure(3)\npl.imshow(G0, interpolation='nearest')\npl.title('OT matrix G0')\n\npl.figure(4)\not.plot.plot2D_samples_mat(xs, xt, G0, c=[.5, .5, 1])\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.legend(loc=0)\npl.title('OT matrix with samples')"
      ], 
      "outputs": [], 
      "metadata": {
        "collapsed": false
      }
    }, 
    {
      "source": [
        "Compute Sinkhorn\n----------------\n\n"
      ], 
      "cell_type": "markdown", 
      "metadata": {}
    }, 
    {
      "execution_count": null, 
      "cell_type": "code", 
      "source": [
        "#%% sinkhorn\n\n# reg term\nlambd = 1e-3\n\nGs = ot.sinkhorn(a, b, M, lambd)\n\npl.figure(5)\npl.imshow(Gs, interpolation='nearest')\npl.title('OT matrix sinkhorn')\n\npl.figure(6)\not.plot.plot2D_samples_mat(xs, xt, Gs, color=[.5, .5, 1])\npl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')\npl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')\npl.legend(loc=0)\npl.title('OT matrix Sinkhorn with samples')\n\npl.show()"
      ], 
      "outputs": [], 
      "metadata": {
        "collapsed": false
      }
    }
  ], 
  "metadata": {
    "kernelspec": {
      "display_name": "Python 2", 
      "name": "python2", 
      "language": "python"
    }, 
    "language_info": {
      "mimetype": "text/x-python", 
      "nbconvert_exporter": "python", 
      "name": "python", 
      "file_extension": ".py", 
      "version": "2.7.12", 
      "pygments_lexer": "ipython2", 
      "codemirror_mode": {
        "version": 2, 
        "name": "ipython"
      }
    }
  }
}