summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_OT_2D_samples.py
blob: 63126ba197158be0e098fd33cd3d95ddf7336560 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# -*- coding: utf-8 -*-
"""
====================================================
2D Optimal transport between empirical distributions
====================================================

Illustration of 2D optimal transport between discributions that are weighted
sum of diracs. The OT matrix is plotted with the samples.

"""

# Author: Remi Flamary <remi.flamary@unice.fr>
#         Kilian Fatras <kilian.fatras@irisa.fr>
#
# License: MIT License

import numpy as np
import matplotlib.pylab as pl
import ot
import ot.plot

##############################################################################
# Generate data
# -------------

#%% parameters and data generation

n = 50  # nb samples

mu_s = np.array([0, 0])
cov_s = np.array([[1, 0], [0, 1]])

mu_t = np.array([4, 4])
cov_t = np.array([[1, -.8], [-.8, 1]])

xs = ot.datasets.make_2D_samples_gauss(n, mu_s, cov_s)
xt = ot.datasets.make_2D_samples_gauss(n, mu_t, cov_t)

a, b = np.ones((n,)) / n, np.ones((n,)) / n  # uniform distribution on samples

# loss matrix
M = ot.dist(xs, xt)
M /= M.max()

##############################################################################
# Plot data
# ---------

#%% plot samples

pl.figure(1)
pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
pl.legend(loc=0)
pl.title('Source and target distributions')

pl.figure(2)
pl.imshow(M, interpolation='nearest')
pl.title('Cost matrix M')

##############################################################################
# Compute EMD
# -----------

#%% EMD

G0 = ot.emd(a, b, M)

pl.figure(3)
pl.imshow(G0, interpolation='nearest')
pl.title('OT matrix G0')

pl.figure(4)
ot.plot.plot2D_samples_mat(xs, xt, G0, c=[.5, .5, 1])
pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
pl.legend(loc=0)
pl.title('OT matrix with samples')


##############################################################################
# Compute Sinkhorn
# ----------------

#%% sinkhorn

# reg term
lambd = 1e-3

Gs = ot.sinkhorn(a, b, M, lambd)

pl.figure(5)
pl.imshow(Gs, interpolation='nearest')
pl.title('OT matrix sinkhorn')

pl.figure(6)
ot.plot.plot2D_samples_mat(xs, xt, Gs, color=[.5, .5, 1])
pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
pl.legend(loc=0)
pl.title('OT matrix Sinkhorn with samples')

pl.show()


##############################################################################
# Emprirical Sinkhorn
# ----------------

#%% sinkhorn

# reg term
lambd = 1e-3

Ges = ot.bregman.empirical_sinkhorn(xs, xt, lambd)

pl.figure(7)
pl.imshow(Ges, interpolation='nearest')
pl.title('OT matrix empirical sinkhorn')

pl.figure(8)
ot.plot.plot2D_samples_mat(xs, xt, Ges, color=[.5, .5, 1])
pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
pl.legend(loc=0)
pl.title('OT matrix Sinkhorn from samples')

pl.show()