summaryrefslogtreecommitdiff
path: root/docs/source/auto_examples/plot_OT_L1_vs_L2.rst
blob: ba52bfeaee986713675d895a5fd244c7084164cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
.. _sphx_glr_auto_examples_plot_OT_L1_vs_L2.py:


==========================================
2D Optimal transport for different metrics
==========================================

Stole the figure idea from Fig. 1 and 2 in
https://arxiv.org/pdf/1706.07650.pdf






.. rst-class:: sphx-glr-horizontal


    *

      .. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_001.png
            :scale: 47

    *

      .. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_002.png
            :scale: 47

    *

      .. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_003.png
            :scale: 47

    *

      .. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_004.png
            :scale: 47

    *

      .. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_005.png
            :scale: 47

    *

      .. image:: /auto_examples/images/sphx_glr_plot_OT_L1_vs_L2_006.png
            :scale: 47





.. code-block:: python


    # Author: Remi Flamary <remi.flamary@unice.fr>
    #
    # License: MIT License

    import numpy as np
    import matplotlib.pylab as pl
    import ot

    #%% parameters and data generation

    for data in range(2):

        if data:
            n = 20  # nb samples
            xs = np.zeros((n, 2))
            xs[:, 0] = np.arange(n) + 1
            xs[:, 1] = (np.arange(n) + 1) * -0.001  # to make it strictly convex...

            xt = np.zeros((n, 2))
            xt[:, 1] = np.arange(n) + 1
        else:

            n = 50  # nb samples
            xtot = np.zeros((n + 1, 2))
            xtot[:, 0] = np.cos(
                (np.arange(n + 1) + 1.0) * 0.9 / (n + 2) * 2 * np.pi)
            xtot[:, 1] = np.sin(
                (np.arange(n + 1) + 1.0) * 0.9 / (n + 2) * 2 * np.pi)

            xs = xtot[:n, :]
            xt = xtot[1:, :]

        a, b = ot.unif(n), ot.unif(n)  # uniform distribution on samples

        # loss matrix
        M1 = ot.dist(xs, xt, metric='euclidean')
        M1 /= M1.max()

        # loss matrix
        M2 = ot.dist(xs, xt, metric='sqeuclidean')
        M2 /= M2.max()

        # loss matrix
        Mp = np.sqrt(ot.dist(xs, xt, metric='euclidean'))
        Mp /= Mp.max()

        #%% plot samples

        pl.figure(1 + 3 * data, figsize=(7, 3))
        pl.clf()
        pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
        pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
        pl.axis('equal')
        pl.title('Source and traget distributions')

        pl.figure(2 + 3 * data, figsize=(7, 3))

        pl.subplot(1, 3, 1)
        pl.imshow(M1, interpolation='nearest')
        pl.title('Euclidean cost')

        pl.subplot(1, 3, 2)
        pl.imshow(M2, interpolation='nearest')
        pl.title('Squared Euclidean cost')

        pl.subplot(1, 3, 3)
        pl.imshow(Mp, interpolation='nearest')
        pl.title('Sqrt Euclidean cost')
        pl.tight_layout()

        #%% EMD
        G1 = ot.emd(a, b, M1)
        G2 = ot.emd(a, b, M2)
        Gp = ot.emd(a, b, Mp)

        pl.figure(3 + 3 * data, figsize=(7, 3))

        pl.subplot(1, 3, 1)
        ot.plot.plot2D_samples_mat(xs, xt, G1, c=[.5, .5, 1])
        pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
        pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
        pl.axis('equal')
        # pl.legend(loc=0)
        pl.title('OT Euclidean')

        pl.subplot(1, 3, 2)
        ot.plot.plot2D_samples_mat(xs, xt, G2, c=[.5, .5, 1])
        pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
        pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
        pl.axis('equal')
        # pl.legend(loc=0)
        pl.title('OT squared Euclidean')

        pl.subplot(1, 3, 3)
        ot.plot.plot2D_samples_mat(xs, xt, Gp, c=[.5, .5, 1])
        pl.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
        pl.plot(xt[:, 0], xt[:, 1], 'xr', label='Target samples')
        pl.axis('equal')
        # pl.legend(loc=0)
        pl.title('OT sqrt Euclidean')
        pl.tight_layout()

    pl.show()

**Total running time of the script:** ( 0 minutes  1.906 seconds)



.. container:: sphx-glr-footer


  .. container:: sphx-glr-download

     :download:`Download Python source code: plot_OT_L1_vs_L2.py <plot_OT_L1_vs_L2.py>`



  .. container:: sphx-glr-download

     :download:`Download Jupyter notebook: plot_OT_L1_vs_L2.ipynb <plot_OT_L1_vs_L2.ipynb>`

.. rst-class:: sphx-glr-signature

    `Generated by Sphinx-Gallery <http://sphinx-gallery.readthedocs.io>`_